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Abstract

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture

model to simultaneously cluster sparse single-cell DNA methylation data and impute miss-

ing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal

outperforms non-probabilistic methods and can handle the inherent missing data character-

istic that dominates single-cell CpG genome sequences. Using newly generated single-cell

5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation pat-

terns in aneuploid tumour genomes, thus defining epiclones that can match or transcend

copy number-determined clonal lineages and opening up an important form of clonal analy-

sis in cancer. Epiclomal is written in R and Python and is available at https://github.com/

shahcompbio/Epiclomal.

Author summary

DNA methylation is an epigenetic mark that occurs when methyl groups are attached to

the DNA molecule, thereby playing decisive roles in numerous biological processes.

Advances in technology have allowed the generation of high-throughput DNA methyla-

tion sequencing data from single cells. One of the goals is to group cells according to their

DNA methylation profiles; however, a major challenge arises due to a large amount of

missing data per cell. To address this problem, we developed a novel statistical model and

framework: Epiclomal. Our approach uses a hierarchical mixture model to borrow statisti-

cal strength across cells and neighboring loci to accurately define cell groups (clusters).

We compare our approach to different methods on both synthetic and published datasets.
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We show that Epiclomal is more robust than other approaches, producing more accurate

clusters of cells in the majority of experimental scenarios. We also apply Epiclomal to

newly generated single-cell DNA methylation data from breast cancer xenografts. Our

results show that methylation-based clusters can mirror or in some instances transcend

the clusters defined by single-cell copy number analysis. This illustrates the importance of

single-cell DNA methylation analysis in understanding cellular heterogeneity in cancer.

Introduction

DNA methylation of the fifth cytosine position (5mC) is a well studied epigenetic mark that

plays decisive roles in the regulation of cell transcriptional programs [1]. In mammals, 5mC

occurs mainly at CpG dinucleotides [2] whose distribution is clustered within regions of the

genome called CpG islands (CGIs). Bisulfite mediated conversion of 5mC to uracil, referred to

as bisulfite sequencing, has been a key tool for quantifying genome-wide DNA methylation at

single-cytosine resolution. Advances in technology and laboratory protocols have made it pos-

sible to generate high-throughput sequencing data for individual cells [3–6]. In particular, sin-

gle-cell whole-genome bisulfite sequencing (sc-WGBS) techniques have been developed to

assess the epigenetic diversity of a cell population [7, 8]. Because of the limited amount of

DNA material, the generated sc-WGBS data are usually sparse, that is, data from many CpG

sites are missing and/or are subject to sequencing error. Therefore, there is a great need to

develop statistical and computational methods to cluster cells according to their DNA methyl-

ation profiles and dealing with the extreme sparsity of the data. The resulting clusters can be

used for identification of cancer tumor cell subpopulations [9–11], detection of previously

unknown cell types as well as deeper characterization of known ones [12–14], and imputation

of missing CpG data by enabling information to be pooled across cells within the same cluster

[15].

An increasing amount of sc-WGBS data has been generated from various cell types, includ-

ing mouse embryonic stem cells [16, 17], human hematopoietic stem cells [7, 12], human

hepatocellular carcinomas [11], mouse hepatocytes and fibroblasts [13], human and mouse

brain cells [14], and human cell lines [18]. To assess the epigenetic diversity in these different

cell populations, a variety of non-probabilistic methods have been considered. Smallwood

et al. [16] proposed a sliding window approach to compute methylation rates of CpG sites

across the genome followed by complete-linkage hierarchical clustering considering Euclidean

distances and the most variable sites. Angermueller et al. [17] computed the mean methylation

levels across gene bodies and as in [16], clustered the cells using hierarchical clustering and

only the most variable genes. Farlik et al. [12] clustered cells based on their average methyla-

tion over different sets of transcription factor binding sites also using hierarchical clustering.

Gravina et al. [13] considered the sliding window approach of [16] to compute methylation

rates and used principal component analysis to visually assess clusters of cells. Hou et al. [11]

considered the CpG-based Pearson correlation between pairs of cells followed by hierarchical

clustering. Luo et al. [14] first applied a hierarchical clustering method called BackSPIN [19] to

bin-based methylation rates, followed by cluster merging using gene body methylation levels.

Mulqueen et al. [18] used NMF (non-negative matrix factorization, [20]) and tSNE [21] for

dimensionality reduction, followed by DBSCAN [22] for clustering. Hui et al. [7] proposed

PDclust, a genome-wide pairwise dissimilarity clustering strategy that leverages the methyla-

tion states of individual CpGs. Recently, Kapourani and Sanguinetti [15] proposed a probabi-

listic clustering method based on a hierarchical mixture of probit regression models and
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focused their evaluation on missing CpG data imputation. Angermuller et al. [23] also pro-

posed a deep learning approach for CpG missing data imputation, but did not address the clus-

tering problem.

Despite the considerable diversity in clustering approaches, there is still a great need for

probabilistic, model-based approaches to simultaneously cluster sc-WGBS data while also

inferring the missing methylation states. Because such methods enable statistical strength to be

borrowed across cells and neighbouring CpGs by assuming that data within the same cell clus-

ter and genomic region share the same model distribution parameters, we surmise that they

should provide more robust inference than non-probabilistic methods.

In this work, we propose Epiclomal, a probabilistic algorithm to cluster sparse CpG-based

DNA methylation data from sc-WGBS. Our approach is based on a hierarchical mixture

model (see the graphical models in Fig 1), which pools information from observed data across

all cells and neighbouring CpGs to infer cell-specific cluster assignments and their correspond-

ing hidden methylation profiles. Epiclomal is part of a novel comprehensive statistical and

computational framework (Fig 2) that includes data pre-processing, different clustering meth-

ods corresponding to previously proposed approaches [7, 11, 16–18], plotting, and quantitative

performance evaluation measures to analyze the results. We use our framework to present an

assessment of clustering methods over previously published and synthetic data sets, plus a

novel large-scale sc-WGBS data set from breast cancer xenografts [10, 24] generated using

state-of-the-art methodology [7].

Results

Overview of Epiclomal

Epiclomal is a clustering method based on a hierarchical mixture of Bernoulli distributions. It

is given a sparse matrix of N rows (cells) and M columns (CpG sites), in which each entry is

either 0 (unmethylated), 1 (methylated), or missing. The distribution of the observed data Xnm

for each CpG site m from cell n depends on the latent cell-specific cluster assignment Zn and

the corresponding true hidden methylation state (epigenotype) at that CpG, Gkm (Fig 1a). We

use a Variational Bayes (VB) algorithm (Methods, subsection Model and inference) with ran-

dom and informed initializations to infer not only cell-to-cluster assignments, but also the true

hidden cluster-specific epigenotypes Gk1, . . ., GkM for each cluster k, for k = 1, . . ., K. We run

Epiclomal considering K from 1 to a maximum number of possible clusters and choose the

best K along with the best clustering assignments as the combination that minimizes the devi-

ance information criterion (DIC, [25]) using an elbow plot selection procedure (Methods, sub-

section Initialization and choice of K).

Epiclomal has two variants: EpiclomalBasic (Fig 1a) and EpiclomalRegion (Fig 1b). While

EpiclomalBasic imposes less structure on the model by assuming that the true hidden methyla-

tion states share the same distribution across all the CpG sites considered, EpiclomalRegion

allows their distribution to vary across genomic functional regions such as CGIs. Although

computationally more expensive than EpiclomalBasic, EpiclomalRegion leads to a model that

better reflects the expected behaviour of the real data. Bulk data can be used to reassign cells to

the EpiclomalRegion clusters using an algorithm that stochastically reassigns cells to clusters

while trying to best match the cumulative CpG states of all cells to the corresponding bulk

CpG state. This extension is called EpiclomalBulk (Methods, subsection EpiclomalBulk).

Epiclomal is then incorporated into the computational framework presented in Fig 2 and

described in what follows.
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Overview of proposed framework

Input data and pre-processing. Our framework (Fig 2) can take as input either real or

synthetic data. For real data, we take files with CpG methylation calls across the genome from

individual cells and extract data from defined regions of interest (e.g., CGIs, gene bodies, and

differentially methylated regions). CpGs exhibiting partially methylated calls (median

percentage < 1.35 over observed sites for all datasets, Table A in S1 Material) are assigned a

Fig 1. (a) EpiclomalBasic and (b) EpiclomalRegion graphical models. In (a), the shaded node Xnm denotes the observed methylation state at CpG site m of cell n.

In (b), we take into account the region location of each CpG and let the shaded node Xnrl denote the observed methylation state at CpG site l of region r of cell n.

Both Xnm and Xnrl take values in S ¼ funmethylated; methylatedg or simply S ¼ f0; 1g. In (a) and (b), the unshaded Zn node corresponds to the latent variable

(with a value in {1, . . ., K}) indicating the true cluster population (epiclone) for cell n. The Gkm and Gkrl unshaded nodes in (a) and (b) respectively are the latent

variables with values in S that correspond to the true hidden CpG epigenotypes for each epiclone k. The unshaded μ, π, and � nodes in both (a) and (b) correspond

to the unknown model parameters, which under the Bayesian paradigm have prior distributions with fixed hyperparameters described by the shaded nodes with the

0 superscript. The distribution assumed for each variable or parameter is written within its node. The edges of the graphs depict dependencies. The plates depict

repetitions. In EpiclomalBasic (a), true hidden epigenotypes share the same probability distribution across all CpG sites in the same epiclone (Gkm� Bernoulli(μk)).

In EpiclomalRegion (b), true hidden epigenotypes follow a Bernoulli distribution with probability parameters that vary across regions (Gkrl� Bernoulli(μkr)).

https://doi.org/10.1371/journal.pcbi.1008270.g001

Fig 2. The three components of our proposed framework. Input data and pre-processing: data from regions of interest are extracted from methylation call files,

which can be filtered to keep only data from regions with a desired amount of missing data and methylation level IQR. A synthetic data pipeline is also provided to

simulate data under different parameters. Clustering: cells are clustered using different non-probabilistic clustering methods, with results that will then be used as

initial values for Epiclomal methods. Output and performance measures: different metrics are provided to evaluate the output of each method when true cluster

assignments are known.

https://doi.org/10.1371/journal.pcbi.1008270.g002
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value of one (methylated state) if the corresponding methylation fraction was� 0.5 and a

value of zero (unmethylated state) otherwise. Because some CpG sites do not exhibit variation

and therefore are uninformative for clustering, our framework optionally allows selection of

specific regions. One can then consider the data from all regions of interest or apply our region

selection pipeline to use data from a subset of those regions. Our proposed selection pipeline

first keeps the regions with at least 5% coverage in all or 10% of cells and then selects regions

with the most variable methylation levels across cells (using the interquartile range, or IQR),

optionally controlling for a desired number of CpG loci. If bulk methylation data are available,

our framework can take them as input and use them to inform inference.

For synthetic data, we provide a pipeline that generates single-cell methylation data consid-

ering various parameters (e.g., missing proportion, number of cells, and number of loci),

assuming that true cluster methylation profiles arise from a phylogenetic process with loci

changing methylation states at each new cluster generation (Section 2 in S1 Material). This

process is motivated by tumour clonal composition theory [9, 10], in which clonal sub-popula-

tions arise from a hierarchical ancestor-descendant phylogenetic process. Note that our pro-

posed synthetic data generator does not simulate data according to our model because

Epiclomal is unaware of phylogenetic dependencies.

Cluster initialization. Given methylation calls and genomic coordinates of retained

regions, we first cluster cells according to various non-probabilistic methods. The results will

then be used as initial values for Epiclomal as well as for comparison. We deployed two types

of non-probabilistic clustering methods: region- and CpG-based (see Methods, subsection

Non-probabilistic clustering methods).

In the region-based approaches, EuclideanClust and DensityCut, we cluster cells consider-

ing as input the mean methylation level of each region. EuclideanClust is based on the

approaches of [16] and [17] and uses hierarchical clustering with Euclidean distances. Density-

Cut [26] is a density-based clustering method applied after dimensionality reduction; this

resembles the dimensionality reduction technique (NMF [20] + tSNE [21]) followed by a dif-

ferent density-based clustering algorithm (DBSCAN [22]) used by Mulqueen et al. [18].

In the CpG-based approaches, Hammingclust and PearsonClust, we consider the methyla-

tion state of each individual CpG. HammingClust uses hierarchical clustering with Hamming

distances, the same as in PDclust [7]. PearsonClust applies hierarchical clustering using Pear-

son correlation values, which is equivalent to the approach used in [11].

To find the optimal number of clusters, DensityCut includes its own automatic method,

whereas for the hierarchical clustering methods we use the Calinski-Harabasz (CH) index

[27]. Our pipeline runs Epiclomal using the results of the non-probabilistic methods as initial

values along with a set of random initial values and chooses the best configuration, as

explained in the “Overview of Epiclomal” section.

Output and performance measures. For all clustering methods, our framework outputs

predictions of cell-to-cluster assignments, number of clusters, and cluster (or epiclone) distri-

bution frequencies (i.e., the proportion of cells assigned to each cluster). In addition, for Epi-

clomal, we obtain the estimated missing CpG values and the cell-to-cluster assignment

posterior probabilities.

When ground-truth clustering is available, we also output a performance evaluation mea-

sure for each of the five predictions described above (Fig 2 and Section 3 in S1 Material). The

V-measure [28] evaluates the cell-to-cluster assignments and is a score between zero and one,

where one stands for perfect clustering and zero for random cell-to-cluster assignments. The

V-measure captures the homogeneity and completeness of a clustering result. To satisfy the

homogeneity criterion, a clustering procedure must assign only those cells that are members of

a single group to a single cluster. Completeness is satisfied if all those cells that are members of
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a single group are assigned to a single cluster. The harmonic mean of homogeneity (h) and

completeness (c) gives rise to the V-measure (V ¼ 2hc
hþc), and even a small percentage of misclas-

sified cells can significantly affect it.

We also report the predicted number of clusters and the mean absolute error (MAE)

between true and predicted cluster frequencies. In addition, when applying Epiclomal on syn-

thetic data, we consider the Hamming distance as the proportion of discordant entries between

true and inferred vectors of methylation states. We also compute for Epiclomal the uncertainty

true positive rate of cluster assignment probabilities, that is, how well the uncertainty is esti-

mated for cells whose membership is unclear due to missing data.

Epiclomal outperforms other methods on synthetic data

To evaluate the performance of our proposed methods over a wide range of characteristics, we

generated a large number of synthetic datasets and applied our Epiclomal approaches (Epiclo-

malRegion, EpiclomalBasic, and EpiclomalBulk), as well as the four non-probabilistic methods

(EuclideanClust, DensityCut, HammingClust, and PearsonClust) to each generated data set.

We considered several experiments, where in each one we varied one of eight parameters

while keeping the others fixed, as indicated in Table 1. For each setting, we generated 30 input

datasets and ran Epiclomal with a total of 300 informed and random VB initializations. Then

we computed the V-measure along with the other quantities included in our framework to

assess method performance.

Fig 3 shows the results when the proportion of missing data is varied from 0.5 to 0.95. Our

proposed probabilistic Epiclomal methods give better or comparable V-measures (panel a)

with overall more correct values for the number of clusters (K = 3, panel b) than the non-

probabilistic methods, which tend to overestimate (EuclideanClust) or underestimate (Pear-

sonClust, HammingClust, and DensityCut) the number of clusters. PearsonClust and Ham-

mingClust fail to produce results in the case of 0.95 proportion of missing data. Using bulk

data via EpiclomalBulk shows improvement in estimating cluster frequencies, especially when

the missing data proportion is large (0.9 and 0.95, panel c). The cluster assignment uncertainty

is well estimated by EpiclomalRegion for up to 0.7 missing proportion; however, it drops rap-

idly for 0.8 and 0.9 missing proportion (panel d).

Table 1. Varying parameters and their ranges for synthetic data simulation. For each experiment, we varied one

parameter and kept the others fixed. Note that varying the number of regions is equivalent to varying region size

because the total number of loci is fixed. Unless otherwise specified, the fixed parameters are: missing proportion 0.8,

region size 100, number of cells 100, proportion of cell-to-cell variability 0, number of epiclones 3, equal epiclone fre-

quencies (1/3), number of loci 10,000, and number of regions different between clusters 1. For the cell-to-cell variability

experiment (Fig 4c), we used 25 regions to have a larger number of loci that differed between clusters. For the number

of epiclones experiment (Fig 4d) and the epiclone frequency experiment (Fig 4e), we used 500 cells to allow for enough

cells to be represented in each case. For the number of loci experiment (Fig 4f), we also varied the number of regions to

keep the differences among clusters fixed (e.g., 50 regions for 5,000 loci, 5,000 regions for 500,000 loci).

Varying parameter Varying range

Missing proportion 0.5 to 0.95

Number of regions 25 to 200

Number of cells 12 to 2500

Cell-to-cell variability 0 to 0.3

Number of clusters (epiclones) 1 to 10

Epiclone frequencies balanced to very unbalanced

Number of loci 5 000 to 500 000

Number of regions different between clusters 1 to 6

https://doi.org/10.1371/journal.pcbi.1008270.t001
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Fig 3. Simulation results when varying the missing data proportion. We report mean results produced by Epiclomal and the non-probabilistic

methods taken over 30 randomly generated synthetic datasets: (a) V-measure; (b) Number of predicted clusters (true is 3); the top panel shows the

proportion of data sets for which a method failed to produce a result; (c) Epiclone frequency (prevalence) MAE (mean absolute error); (d) Uncertainty

true positive rate; and (e) Hamming distance for three variants of EpiclomalRegion inferred methylation states: unadjusted, adjusted, and naive (see

Sections 1.2 and 3.4 in S1 Material). The vertical bars correspond to one standard deviation above and below the mean value.

https://doi.org/10.1371/journal.pcbi.1008270.g003
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Fig 4 shows that Epiclomal results in a better V-measure than the non-probabilistic meth-

ods in all the remaining experimental scenarios with a fixed missing proportion of 0.8 (see also

Figures C to I in S1 Figs). All methods perform worse when the problem is more difficult, such

as when decreasing the number of different loci among clusters (Fig 4a and Figure I in S1 Figs)

or increasing cell-to-cell variability (Fig 4c). Increasing the number of cells (Fig 4b) does not

improve the V-measure, except for DensityCut, but it does reduce its variability. The Epiclo-

mal methods are more robust to an increasing number of epiclones (Fig 4d) and a change in

epiclone frequencies (Fig 4e). When increasing the number of loci (Fig 4f), the performance of

HammingClust and PearsonClust remains somewhat constant, but the other methods show a

decreasing pattern of performance. However, the Epiclomal methods still perform better for

all numbers of loci considered than all the other methods. Therefore, this provides support to

a strategy for selecting a smaller number of loci (under 50,000) in order to keep the true signal

and eliminate noise when analyzing a real data set.

Figs 3e and 5 reveal that Epiclomal can generally impute CpG methylation states more cor-

rectly than a naive imputation (see Section 1.2 in S1 Material) for the same clustering result.

Epiclomal recapitulates methylation subgroups from public datasets

We further assessed the performance of our methods on three published sc-WGBS datasets

[11, 12, 16] and compared our results with the clustering results reported in each paper. Exper-

imental validation of epiclones is often difficult, and therefore when working with cells from

different known types or treatment conditions, authors expect their clusters to somewhat

reflect the epigenetic diversity of those types [12, 16]. In [11], there were no predefined cell

sub-populations; however the authors considered gene expression and copy number changes

to further support their findings.

Table 2 shows that these datasets display a variety of characteristics, with missing data pro-

portions varying from 0.54 to 0.98. Table A in S1 Material presents the results of analysing the

three datasets for non-binary methylation states. We observed extremely small percentages of

CpGs with partially methylated states for all datasets analyzed, with a median< 1.35% across

cells when using all observed CpG sites for all datasets. When using only CpG sites with at

least two reads aligned to them, we observed a median < 2.25% for all datasets except for Far-

lik2016 (the sparsest dataset), which had a slightly larger median of 5.13%.

Fig 6a shows a dimensionality reduction visualization using NMF [20] followed by tSNE

[21]. Note, however, that this does not clearly separate the clusters, particularly for more chal-

lenging data sets, such as Farlik2016. UMAP [29] or simple tSNE did not show better separa-

tion; instead, heatmaps of average methylation rates in each cell and genomic region clearly

show the specific features of each epiclone (Figures K, L and M in S1 Figs). Fig 6b shows co-

clustering plots that summarise the EpiclomalRegion’s cell-to-cluster assignments.

Fig 6c to 6e present the results for cell-to-cluster assignments, cluster frequencies and num-

ber of clusters, respectively, of applying our framework to these published datasets considering

three filtered inputs with 10,000, 15,000 and 20,000 CpG loci (see Methods for details on pre-

processing real data). In addition, we evaluated the usefulness of selecting regions by IQR of

mean methylation levels by running all non-probabilistic methods on a large input that filtered

out only regions with methylation IQR< 0.01 and also plotted the results in Fig 6c to 6e.

The Smallwood2014 dataset [16] is made up of 32 mouse embryonic stem cells, where 20

cells were cultured in a regular serum medium and 12 cells in a 2i medium inducing hypo-

methylation. Fig 6 shows good agreement between the clusters inferred by EpiclomalRegion

and the ones obtained by [16], with only one discordant cell (V-measure 0.82 for 10,000 loci,

Fig 6c and Figure K in S1 Figs). PearsonClust correctly clustered all cells for the three filtered
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Fig 4. Predicted cell-to-cluster assignments on synthetic data. We report mean V-measures produced by Epiclomal and the non-probabilistic

methods taken over 30 randomly generated synthetic data sets, when we vary by: (a) the number of regions, (b) the number of cells, (c) the cell-to-

cell variability, (d) the number of clones, (e) the cluster frequencies (prevalences), and (f) the number of loci. The vertical bars correspond to one

standard deviation above and below the mean value. The Epiclomal methods outperformed the other methods in all cases.

https://doi.org/10.1371/journal.pcbi.1008270.g004
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Fig 5. Imputation results on synthetic data. Average hamming distance for three variants of EpiclomalRegion inferred methylation states: unadjusted,

adjusted, and naive (see Sections 1.2 and 3.4 in S1 Material) when varying: (a) the number of regions, (b) the number of cells, (c) the cell-to-cell

variability, (d) the number of clones, (e) the cluster frequencies (prevalences), and (f) the number of loci. The vertical bars correspond to one standard

deviation above and below the mean value.

https://doi.org/10.1371/journal.pcbi.1008270.g005
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input datasets (V-measure = 1, Fig 6c), but the other non-probabilistic methods misclassified

one or two cells.

The Hou2016 dataset [11] contains 25 cells from a human hepatocellular carcinoma tissue

sample. We compared our results with the two subpopulations identified by [11] based not

only on DNA methylation, but also on copy number and gene expression data. For all input

datasets, EpiclomalRegion correctly assigned all cells to their corresponding subpopulations

(V-measure = 1, Fig 6).

The Farlik2016 data set [12] contains different types of human hematopoietic cells, totalling

122 cells. We compared our results with the six clusters found by Farlik et al. [12], made up of

hematopoietic stem cells (HSC) and progenitor cell types (myeloid, multipotent, and lymphoid

progenitor cells). For the input with 10,000 loci, EpiclomalRegion resulted in a V-measure of

0.34, with seven predicted clusters (Fig 6c to 6e). As stated before, the V-measure can be signif-

icantly affected by a small percentage of misclassified cells. Therefore, even though the V-mea-

sure is low, Fig 6b shows good agreement between Epiclomal clustering and the clustering

reported by Farlik et al.
Fig 6c to 6e show that EpiclomalRegion generally outperformed the non-probabilistic

methods on V-measure, cluster frequency mean absolute error, and number of correctly pre-

dicted clusters. In addition, because Epiclomal is based on a Bayesian inference approach, pos-

terior means and standard deviations of model parameters can be obtained as illustrated in

Figure J in S1 Figs, which presents EpiclomalRegion inferred posterior mean methylation

probabilities along with standard deviations across regions and clusters (i.e., the posterior

means and standard deviations of μkr for all k and r; see Fig 1b and Eq. (14) in S1 Material) for

the filtered input of about 10,000 loci.

Epiclomal reveals copy number-dependent and copy number-independent

epiclones in breast cancer

Having verified the performance of Epiclomal on synthetic data and public domain datasets,

we set out to perform epiclone group discovery on single-cell epigenomes generated in-house

on a range of patient-derived breast tumour xenografts. First, to illustrate the scalability of Epi-

clomal with aneuploid single-cell cancer epigenomes, we analysed 558 tumour xenograft single

epigenomes (called InHouse data) from two patients (SA501 and SA609) with triple-negative

breast cancer and one patient (SA532) with ER+PR-Her2+ breast cancer (Table B in S1

Material) sequenced using the PBAL method [7]. Fig 7a and 7b show the heatmap and t-SNE

visualization respectively for the InHouse data along with the clustering results of Epiclomal-

Region, which resulted in three clusters, one for each patient. Fig 7a shows the methylation

Table 2. Summary of the real data sets used in this work. Column descriptions (in order of appearance) are as follows: (1) data set names corresponding to three pub-

lished data sets and the new in-house data set; (2) type of cells in each data set; (3) number of cells considered for each data set, which varied from tens to hundreds of cells;

(4) number of clusters, as reported in the respective published papers, NA (not available) for our in-house data set; (5) genomic functional regions considered for each data

set, which were the same as in the original papers when applicable, CGI stands for CpG Islands, TFBS stands for Transcription Factor Binding Sites; (6) missing data pro-

portion for each data set for the 10,000 loci filtered input and varying from 0.69 to 0.89; (7) number of loci for the largest input data sets obtained by including all regions

with methylation IQR� 0.01; these varied from one-quarter million to 1 million CpG sites; (8) missing data proportion for the largest input data sets, which varied from

0.54 to 0.98.

Data set Cell type # cells # clusters Regions Miss 10K Nloci IQR� .01 Miss IQR� .01

Smallwood2014 [16] mouse embryonic stem cells 32 2 CGI 0.69 786 620 0.54

Hou2016 [11] human hepatocellular carcinomas 25 2 CGI 0.87 255 136 0.90

Farlik2016 [12] human hematopoietic cells 122 6 TFBS 0.89 512 153 0.98

InHouse human xenografted cancer cells (3 patients) 558 NA CGI 0.82 1 019 956 0.79

https://doi.org/10.1371/journal.pcbi.1008270.t002
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Fig 6. Results on the real data sets. (a) Dimensionality reduction visualization plots showing the clustering reported in the published

papers on the� 10,000 loci processed data sets. (b) Co-clustering between the real data published clusters on the rows and

EpiclomalRegion predictions on the columns. Each entry aij is the percentage of cells in published class i that are present in predicted

cluster j, with the rows summing up to 100%. A perfect agreement would result in a square matrix with a black diagonal. (c) V-measures

comparing the cell assignments with the published assignments, with higher values meaning better agreement. (d) Cluster frequencies

mean absolute error, comparing the inferred proportions of clusters with the published proportions, with lower values meaning better
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differences between the three patients, with SA609 having a highly different methylation

profile than the other two. Note that two different experimental plates of markedly different

missing proportions for SA532 (Fig 7a) resulted in visually distinct subclusters in Fig 7b,

potentially affecting density-based approaches. Indeed, DensityCut clustered these plates into

two different clusters, yet Epiclomal was robust to this batch effect.

We next focused our analysis on one of the three patient-derived xenografts mentioned

above, which was previously characterized with whole-genome sequencing (WGS) [10] and

single-cell WGS [4] (patient SA501 in Table B in S1 Material). Breast cancers often exhibit

whole chromosome gains and losses (in addition to sub-chromosomal aneuploidy), especially

of the X chromosome, which provides a strong methylation signal. As previously described,

this patient-derived xenograft (PDX) underwent copy number clonal dynamics between pas-

sages, with clones losing one copy of X eventually dominating the populations of later passages.

Patient tumour cells at diagnosis were mouse xenografted and serially transplanted over gener-

ations. Then sc-WGBS data from passages 2, 7, and 10 were generated using the PBAL proto-

col [7]. After filtering out cells that did not pass quality control upon alignment (see Methods),

we obtained a final sc-WGBS dataset of 244 single cells over three passages. We considered as

initial regions the set of differentially methylated CGIs found when comparing bulk BS-seq

agreement. (e) Number of predicted clusters. The horizontal dashed lines correspond to the published number of clusters; bars closer to

this line represent better agreement.

https://doi.org/10.1371/journal.pcbi.1008270.g006

Fig 7. Visualization of the InHouse clusters. (a) EpiclomalRegion clustering, with data filtered to include the most variable CGIs and obtain� 15,000 loci (327

CGIs, cell average missing proportion 0.82, 558 cells). EpiclomalRegion obtained 3 clusters. Rows are cells, and columns are CGIs. (b) tSNE dimensionality

reduction and color-coding of the Epiclomal clusters onto the tSNE 2-dimensional space.

https://doi.org/10.1371/journal.pcbi.1008270.g007
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data from passages 1 and 10 (see Methods). We then applied non-negative matrix factorization

(NMF [18, 20, 30]) to the region mean methylation data of all 244 cells as a feature selection

strategy obtaining a final input set of 94 regions (see S1 Table for their coordinates). Over all

94 regions, chromosome X contained the most differentially methylated regions of any single

chromosome (29 out of 94; Figures N and O in S1 Figs).

Using these 94 regions, EpiclomalRegion clustered the cells (Fig 8a) into four epiclones:

two primarily containing passage 2 cells, and two containing a mix of passage 7 and 10 cells

(EpiclomalBasic produced the same results). The distribution of posterior cluster assignment

probabilities (p) indicates that most cells were classified with p>0.9, except for two cells that

were assigned to Cluster 3 with probabilities of 0.73 and 0.69.

Fig 8. Results for patient SA501. (a) Mean methylation level for each of the 94 NMF-selected regions (CGIs) for patient SA501 across all cells ordered according

to the four methylation clusters found using EpiclomalRegion. Rows are cells, and columns are CGIs. (b) Inferred genome-wide copy numbers for the same cells as

in (a) clustered using a ward.D2 hierarchical clustering method and Euclidean copy number distances. Note that copy number 5 means five or more copies. To call

copy number changes, we used the methylation sc-WGBS data. Only one epiclone and one copy number clone matched, the remaining clones transcended each

other. (c) Pearson correlation between mean methylation data and copy number data in each of the 94 regions. There was correlation in chromosome X, but not in

the autosomal chromosomes. (d) Heatmap showing the percentage of cells in the copy number clusters (rows) that are in the methylation clusters (columns); rows

sum up to 100.

https://doi.org/10.1371/journal.pcbi.1008270.g008
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Inspection shows that Cluster 1 contains 10/40 passage 2 cells (and 1 passage 7 cell) with

unmethylated features, except for chromosome X regions, which are mainly methylated. This

is consistent with a small population of passage 2 cells presenting two copies of the X chromo-

some (Fig 8b) and normal X-inactivation mechanism for which the X-inactive copy exhibits

most CGIs hypermethylated [31]. Cluster 2 contains the remaining 30/40 passage 2 cells (and

one passage 10 cell), but with unmethylated chromosome X regions, which is compatible with

the loss of one copy of X (see also Fig 8b) indicating that either the active X was the inherited

copy or that the inactive X was demethylated. At later passages, several autosomal regions

became methylated (see, for example, chromosomes 1, 9, 12, 19, and 20 in S2 Table). In addi-

tion, we identified three main regions that are methylated only in some of the later passage

cells (see also S2 Table), resulting in two different epiclones, each containing a mix of passage

7 and 10 cells (cluster 3 containing 53/98 passage 7 cells and 34/106 passage 10 cells; and clus-

ter 4 containing 44/98 passage 7 cells and 71/106 passage 10 cells).

These observations suggest that some chromosomal regions, such as X, may show strong

copy number influence on CpG states, whereas others may differ in CpG state, but be unre-

lated to copy number state in aneuploid genomes. Therefore, we next investigated possible cor-

relations between methylation and copy number alterations derived from the same sc-WGBS

data (see Methods). A systematic comparison shows that indeed the average methylation levels

and copy number states across cells for each of the 94 regions (Fig 8b) were only highly corre-

lated (Pearson correlation >0.5; Fig 8c) for the X chromosome. This implies that epiclones

may transcend copy number-defined clones in the studied SA501 PDX.

Indeed, when we compared the four epiclones with the four sc-PBAL copy number (CN)

clones, we noticed that they can match or transcend each other as follows (Fig 8b and 8d): epi-

clone 1 with methylated regions in the X chromosome matches exactly CN clone I having two

copies of the X chromosome, which shows a strong relationship between the presence of the

second copy of the X chromosome and the methylation pattern. However, 26/31 passage-2

cells with all 94 regions unmethylated from epiclone 2 are found in CN clone II, which also

contains 47/87 cells from epiclone 3 and 6/115 cells from epiclone 4, even though these have

several regions that are methylated. Finally, epiclone 3 transcends CN clones II (47/87 cells

from epiclone 3 are in CN clone II) and IV (27/87 cells from epiclone 3 are in CN clone IV),

and epiclone 4 transcends CN clones III (72/115 cells from epiclone 4 are in clone III) and IV

(29/115 cells from epiclone 4 are in CN clone IV). Taken together, these data show for the first

time with single-cell methylation analysis that epigenetically defined clones may present a dif-

ferent lineage from that of copy number-defined clonal architectures, opening up this form of

analysis for cancer genomes.

Discussion

Single-cell CpG genome analysis is currently held back by a dearth of principled methods for

handling the features of single-cell methylation data. To this end, we have developed Epiclo-

mal, a probabilistic CpG-based clustering method for clustering sparse sc-WGBS data and

elucidating the epigenetic diversity of different types of cell populations. Epiclomal uses a prin-

cipled Variational Bayes inference method that is robust to the initial starting point, with the

optimal clustering being obtained multiple times across independent runs well before our

1000 iteration cut-off (Figure P in S1 Figs). Our method has produced overall better results

than non-probabilistic based methods when tested on synthetic data from eight extensive sim-

ulation scenarios (Figs 3 and 4, and Figures B to I in S1 Figs) and three comprehensive real

data sets (Fig 6). Epiclomal is robust and consistent to subsampling by CpG coverage and

number of cells and can generally impute missing CpG methylation values more correctly
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than a naive imputation for the same clustering result (Figs 3e and 5 and Figure Q in S1 Figs).

Importantly, Epiclomal is reliable when the amount of data missing is large and/or varies

across cells and can find the true clusters and epiclone frequencies when the signal is subtle,

which are both limiting features of current sc-WGBS data.

It is well understood that 5mC distribution in the genome is regionally clustered and that

this has implications for computational methods. EpiclomalRegion considers CpG-based

methylation dependencies in functional regions and models errors while simultaneously

assigning cells to clusters and imputing missing data. It can also use bulk DNA methylation

data to improve epiclone frequencies, which are important quantities, particularly for the

study of cancer tumour composition. Epiclomal works at the CpG level and hence considers

the contribution of every sequenced CpG site in the selected regions, without loss of informa-

tion by region averaging. Epiclomal not only runs an uninformed clustering method, but also

uses the clustering results of four other methods (with more easily added) and a robust model

selection strategy to return the best prediction.

Epiclomal is part of an extensive statistical and computational framework that provides

interpretable results and five performance measures. It also enables the easy inclusion of novel

components in the computational pipeline. Our framework includes a pre-processing step

where specific regions can be selected to increase signal and eliminate noise in the input data.

Epiclomal obtained better or equal results on the smaller filtered input datasets than on the

larger ones, supporting the notion that filtering out the most invariant regions may improve the

signal for clustering. In addition, our synthetic experiments as well as the SA501 intra-patient

analysis on a well-designed set of differentially methylated regions showed that pre-processing

the initial whole-genome data set in a way that keeps the clone differences and eliminates noise

is likely to produce better results overall. Our selection strategy has the limitation of possibly

removing regions that vary only in a small percentage of cells, which may result in clusters

being condensed together. Future work includes a region selection strategy that can increase

the signal-to-noise ratio. One approach, for example, would be to consider the variation across

sites within regions, so that regions with the same variation pattern across cells could be repre-

sented only once in the model by appropriate weights in the data log-likelihood function.

Although epigenomic states are of importance in cancer biology, to date very few single-cell

whole-genome bisulfite datasets have been generated on aneuploid cancer genomes. In this

study, Epiclomal was used with a large (598 genomes, Table B in S1 Material) new sc-WGBS

data set generated by the PBAL method to demonstrate how epiclones and copy number-

determined clones differ. Epiclomal was able to identify known and novel CpG methylation

substructures that could not be identified by non-probabilistic distance-based methods due to

the missing data inherent in sc-WGBS. Specifically, the separation between the two passage 7/

10 subclusters was not found by any of the non-probabilistic methods we considered, even

when a larger set of regions was used. This demonstrates that sophisticated modeling of miss-

ing data and appropriate region selection are necessary to clearly separate possibly weak bio-

logical signals.

The ability to identify CpG-defined sub-clones, or epiclones, made it possible for the first

time to compare a copy number-determined lineage with an epigenetically defined lineage. It

is expected that for certain regions of the genome, for example where allelic hemi-methylation

occurs, changes in chromosomal copy number would strongly pattern 5mC CpG status.

Indeed, we observed this with subclones of a breast cancer PDX (SA501), where biallelic X

chromosome clones that were present in early passages contained epiclones with and without

CpG methylation. In contrast, we observed in the PDX studied that clones defined by autoso-

mal copy number aberrations can exhibit quite distinct epiclone structures, leading to the

notion that in some cases, epiclone-defined lineage will transcend that of copy number-
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defined lineage. This is an expected result since DNA methylation mediates transcriptional cel-

lular memory and therefore cell states that are not “clonal” in the sense of arising from cell

division associated mutational processes. This has important implications for the study of can-

cer evolution and clonal states because a failure to include epigenetic states will under-repre-

sent the cellular population structures of interest. Further work is required to define the scope

and nature of epiclone-defined versus copy number clone-defined cellular lineages in cancer.

Methods

Proposed probabilistic approach—Epiclomal

Model and inference. Our proposed methodology extends the approach of [32] to single-

cell DNA methylation data. In what follows, we describe our model and the Bayesian inference

technique for the case we call EpiclomalRegion, which is based on the assumption that the

probability of a given locus being methylated depends on the genomic region where that locus

is situated and that loci in the same genomic region share the same methylation probability.

The EpiclomalBasic approach is a special case of EpiclomalRegion that is obtained by assuming

that all loci belong to one single region sharing the same probability of being methylated and

therefore can be obtained by setting R = 1 in all derivations below. See the graphical models in

Fig 1.

Let us consider a set of R regions in the genome (e.g., CGIs, gene bodies). Let Xnrl be the

observed methylation status (or epigenotype) for cell n at locus l of region r, for n = 1, . . ., N,

r = 1, . . ., R, and l = 1, . . ., Lr. Our approach allows the set of loci with observed data to vary

across cells, but for simplicity, we write our model and inference derivations assuming that

there are data for all loci in all cells, i.e., assuming complete data. Each Xnrl takes a value in

S ¼ funmethylated; methylatedg or simply S ¼ f0; 1g.
Let Xnr ¼ ðXnr1; . . . ;XnrLr

Þ
T

be the vector of observed data for region r in cell n, and let

Xn ¼ ðX
T
nr; . . . ;XT

nRÞ
T

be the vector of all observed data for cell n. Assume that Xnr1; . . . ;XnrLr

are independent for all n and r. Suppose that there are K� N vectors of true hidden methyla-

tion states shared across the cells. Let Zn with values in {1, . . ., K} be the hidden variable

indicating the true cluster (epiclonal) population of cell n. It is assumed that Z1, . . ., ZN are

independent with P(Zn = k) = πk such that
PK

k¼1
pk ¼ 1. If Zn = k, then the distribution of

Xn depends on the k-th vector of true hidden epigenotypes Gk ¼ ðG
T
k1
; . . . ;GT

kRÞ
T
, where

Gkr ¼ ðGkr1; . . . ;GkrLr
Þ

T
. We assume that Gkr1; . . . ;GkrLr

are independent for all k and r, with

P(Gkrl = s) = μkrs such that
P

s2Smkrs ¼ 1, that is, Gkrl follows a categorical (Bernoulli) distribu-

tion with parameter set μkr ¼ fmkrs : s 2 Sg. Therefore, given the true cluster assignment and

the corresponding true hidden methylation states, the observed data Xnr are independent, with

Xnrl following a categorical distribution with parameters depending on the hidden true state at

locus l of region r for cluster population k, that is,

PðXnrl ¼ tjZn ¼ k;Gkrl ¼ sÞ ¼ �st with
X

t2S

�st ¼ 1: ð1Þ

We can also interpret the probability in (1) as a misclassification error, which in this context

is related to sequencing error.

Let Θ be the set containing all the model parameters, i.e., Θ = {μ, �, π}, where

• μ ¼ ðμT
1
; . . . ;μT

KÞ
T

with μk ¼ ðμ
T
k1
; . . . ; μT

kRÞ
T

and μkr ¼ fmkrs : s 2 Sg;

• � ¼ f�s : s 2 Sg with �s ¼ f�st : t 2 Sg and
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• π = (π1, . . ., πK)T.

To infer Θ and the hidden states Z = (Z1, . . ., Zn)T and G = {G1, . . ., GK}, we adopt a Bayes-

ian approach and derive a Variational Bayes (VB) algorithm [33] to approximate the posterior

distribution of Θ, Z, and G given the observed data X = {X1, . . ., XN}, P(Z, G, Θ|X) by finding

the Variational Distribution (VD), q(Z, G, Θ) with the smallest Kullback-Leibler divergence to

the posterior P(Z, G, Θ|X), which is equivalent to maximizing the evidence lower bound

(ELBO) given by

ELBOðqÞ ¼ E½ logPðX;Z;G;YÞ� � E½ logqðZ;G;YÞ�: ð2Þ

See [34] for more details. We assume the following prior distributions for the parameters in Θ.

• pðμÞ ¼
YK

k¼1

pðμkÞ ¼
YK

k¼1

YR

r¼1

pðμkrÞ, where μkr� Dirichlet(β0)

• pð�Þ ¼
Y

s2S

pð�sÞ, where �s � Dirichletðg0
s Þ

• π� Dirichlet(α0)

Please refer to Section 1.1 in S1 Material for all steps of the proposed VB algorithm for

inferring Z, G, and Θ.

Initialization and choice of K. Because maximizing the ELBO, as given in (2), is generally

a non-convex optimization problem [34], it can lead to a local optimum. To avoid this prob-

lem, it is crucial to initialize the proposed VB algorithm properly. Therefore, we developed the

following initialization framework to tackle this challenge. We ran the Variational Bayes algo-

rithm a maximum number of times T (we used T = 1000 for the real data sets and T = 300 for

the synthetic data sets). We started from different initial posterior cluster assignment probabil-

ities, p�n, for each cell n (for the other two posterior parameters that needed to be initialized, we

used their corresponding prior hyperparameters, that is, g�ð0Þs ¼ g0
s and b

�ð0Þ

kr ¼ b
0
; see Section

1.1 in S1 Material). In other words, each vector p�n of length K will have K − 1 values of 0 and

one value of 1, corresponding to the initial cluster assignment for that cell. Most initializations

are uniformly random, but informed starting values often lead to better results. Therefore, for

all analyses, we used the following initialization strategy. First, we ran EuclideanClust and if

the hierarchical clustering was successful, we cut the hierarchical tree at 1, 2. . .K clusters,

obtaining the first K initial points. Then we did the same for HammingClust and PearsonClust,

obtaining 2 × K more initial points. Finally, we added the prediction made by DensityCut.

Note that initializations from more clustering methods can be easily added to our framework.

In our analyses, we used K = 10 for all synthetic and real data sets. Therefore, a maximum

of I = 31 initializations came from the non-probabilistic methods. The remaining T − I VB

runs were initialized randomly, with each initial number of clusters being a number chosen

uniformly at random between 1 and K. For each run, the VB algorithm returned a number of

recommended clusters c� K and the corresponding cell-to-cluster assignments. With this

strategy, we obtained a more uniform number of clusters across all runs than if we had used

the same K for each run. Therefore, our strategy resembles a BIC or AIC selection criterion in

which we would perform a roughly equal number of runs for each possible number of recom-

mended clusters.

After obtaining the T runs (this was done in parallel on a computing cluster), we have for

each run the number of recommended clusters c� K and the computed DIC score that takes

into account the likelihood of the model as well as the model complexity [25]. Then, for each c,
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we compute the minimum DIC obtained for all runs that recommended c clusters, and we plot

the DIC curve, as in Figure A in S1 Figs.

Now, with a DIC curve, the elbow point can be found as follows. We draw a line from the

first to the last point of the curve and then find the DIC point that is the farthest away from

that line. Sometimes, the DIC curve is not a smooth decreasing function, but instead it can

increase and decrease. Therefore, we decided to consider only the part of the curve with DIC

values decreasing by at least a small percentage threshold (0.2%), which is the green line in

Figure A in S1 Figs. We then find the elbow for this part of the curve, which corresponds to

the best choice of the number of clusters and it is shown by the red line in Figure A in S1 Figs.

The DIC-elbow selection strategy can be used as an automatic way to select the best run. How-

ever, visual inspection of the DIC-elbow can sometimes help choose the best thresholds.

EpiclomalBulk. Often, bulk CpG-level methylation data are produced, that is, a vector of

natural numbers, representing the number of methylated cytosines for each CpG, from 0 to

the read depth D (e.g., D = 60). For instance, a value of 0 means that we expect no cell to be

methylated (all are unmethylated) at that CpG site. A value of 60 means that we expect all the

cells to be methylated, and a value of 30 means that roughly half the cells are methylated and

half are unmethylated. Therefore, given the cell-to-cluster assignments and the corresponding

imputed methylation values, we can compute a score that tells us how well the given imputed

values match the bulk data (for each CpG site, we just have to count the number of cells that

are methylated and then divide by the number of cells and multiply by D).

With this bulk-based score function, we designed a stochastic local search algorithm that

starts from a given configuration (which is EpiclomalRegion’s best result), keeps the number

of clusters fixed, and randomly reassigns “uncertain cells” to one of their “candidate clusters”.

The “uncertain cells” and the “candidate clusters” are obtained as described in Section 3.5 in

S1 Material. Only the CpGs in the regions that make the clusters different are considered. If

the new score is better than before, we always keep it; if it is not, we keep it only 20% of the

time to help the algorithm escape local minima. We repeat this strategy for 10 iterations and

return the combination of new cell-to-cluster assignments and imputed methylation states

that gives the best score.

Non-probabilistic clustering methods

EuclideanClust. EuclideanClust is a region-based method in which we first compute for

each cell the mean methylation level of each region of interest. Because of the sparsity of the

data, we cluster the cells, taking as input data not the original matrix of mean methylation lev-

els, but instead we apply complete-linkage hierarchical clustering to the symmetric matrix of

Euclidean distances between every pair of cells with a dissimilarity matrix based also on

Euclidean distances. EuclideanClust is similar to the approach used by Smallwood et al. [16]

and Angermuller et al. [17], with the difference that the regions are defined differently in our

case (functional genomic regions) versus Smallwood (sliding windows across the genome) and

Angermuller et al. (gene bodies). We use the Calinski-Harabasz (CH) index [27] to automati-

cally choose the number of clusters that best fits the data.

DensityCut. As in EuclideanClust, we first compute for each cell the mean methylation

level of each region of interest. We then use principal component analysis as a dimensionality

reduction technique with a maximum of 20 first principal components and apply DensityCut,

a density-based clustering algorithm proposed by [26], to the resulting principal component

scores.

HammingClust. This method is a CpG-based method because it considers data from all

individual CpGs from all regions of interest to cluster the cells. Because of the sparsity of the
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data, similarly to EuclideanClust, clustering is done by first calculating Hamming distance-

based dissimilarities (proportion of discordant positions) between each pair of cells and then

applying Ward’s linkage hierarchical clustering with Euclidean distances on the matrix of

Hamming-based dissimilarities. PDclust as proposed by Hui et al. [7] produces the same den-

drogram as HammingClust because it consists of the same steps and dissimilarities, except that

PDclust uses percentages of discordant positions and HammingClust proportions. PDClust

does not include an automatic method to select the optimal number of clusters, but Hamming-

clust uses the CH index for that purpose. In addition, HammingClust has the advantage of

being implemented in C++ within R, resulting in much faster computation than PDclust,

which is implemented solely in R.

PearsonClust. PearsonClust is also a CpG-based approach much like HammingClust,

except that instead of Hamming and Euclidean distances, it is based entirely on Pearson corre-

lation. In other words, it first computes the Pearson correlation between every pair of cells and

then applies Ward’s linkage hierarchical clustering with again a Pearson-based dissimilarity

matrix on the initial correlation matrix. This method is equivalent to the approach used by

Hou et al. [11] with the addition of the CH index to select the best clustering partition.

Pre-imputation of missing values for non-probabilistic methods. Sometimes the input

matrix to the non-probabilistic methods is too sparse, and either hierarchical clustering or the

CH-index method for choosing the number of clusters will fail to produce results. For the syn-

thetic data, we simply report this as a failure in order to understand what characteristics of the

input data set make this failure happen. However, for real data sets, we try to run the hierarchi-

cal methods without pre-imputation, and if they fail, we rerun them after pre-imputation; see

the star-labelled runs in Fig 6.

Pre-processing of real data

We pre-processed real data sets using the first part of our proposed framework. For each data

set, we started by considering all regions of the corresponding type presented in the fifth col-

umn of Table 2. Then, after eliminating the empty regions across all cells, we also removed

regions with an average missing proportion across all cells greater than or equal to 95%. Next,

we kept the most variable regions (as measured by IQR of mean methylation levels) that would

produce three filtered inputs with 10,000, 15,000 and 20,000 loci respectively.

In-house sc-WGBS data generation

Biospecimen collection and ethical approval. Tumour fragments from women diag-

nosed with breast lump undergoing surgery or diagnostic core biopsy were collected with

informed consent according to procedures approved by the Ethics Committees at the Univer-

sity of British Columbia. Patients in British Columbia were recruited and samples collected

under the tumor tissue repository (TTR-H06-00289) protocol that falls under the UBC BCCA

Research Ethics Board.

Tissue processing. The tumor materials were processed as described in [10]. Briefly, the

tumor fragments were minced finely with scalpels and then mechanically disaggregated for

one minute using a Stomacher 80 Biomaster (Seward Limited, Worthing, UK) in 1-2 mL cold

DMEM-F12 medium. Aliquots from the resulting suspension of cells and clumps were used

for xenotransplants.

Xenografting. Xenograft samples were transplanted and passaged as described in [10].

Female immune compromised, NOD/SCID interleukin-2 receptor gamma null (NSG) and

NOD Rag-1 null interleukin-2 receptor gamma null (NRG) mice were bred and housed at the

Animal Resource Centre (ARC) at the British Columbia Cancer Research Centre (BCCRC)
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supervised by the Aparicio lab. Surgery was carried out on mice between the ages of 8-12

weeks. The animal care committee and animal welfare and ethical review committee of the

University of British Columbia (UBC) approved all experimental procedures. For subcutane-

ous transplants, mechanically disaggregated cells and clumps of cells were resuspended in 100-

200μl of a 1:1 v/v mixture of cold DMEM/F12: Matrigel (BD Biosciences, San Jose, CA, USA).

Eight- to twelve-week-old mice were anesthetised with isoflurane, after which the cell/clumps

suspension was injected under the skin on the flank using a 1 ml syringe and a 21-gauge

needle.

Histopathological review. On histopathological review, two out of three, i.e., SA501

and SA609, patient-derived xenografts used in this study were triple negative breast cancers

(TNBC). On immunohistochemistry, they were found to be receptor negative breast cancer

subtype. SA532 was a ER+PR-HER2+ xenograft. A pathologist reviewed the slides.

Cell preparation and dispensing. Xenograft tissues were dissociated to cells as described

in [4] before dispensing single cells into the wells of 384 well plates using a contactless piezo-

electric dispenser (sciFLEXArrayer S3, Scienion) with real-time cell detection in the glass cap-

illary nozzle (CellenOne).

sc-WGBS experimental protocol. The Post-Bisulfite Adapter Ligation (PBAL) protocol

described in [7] was used to obtain in-house sc-WGBS data.

Data alignment and methylation calls. One lane of paired end sequencing was used to

create each single cell library. Trim Galore (v0.4.1) and Cutadapt(v1.10) were used for quality

and adapter trimming. Libraries were aligned to a GRCh37-lite reference using Novoalign

(v3.02.10) in bisulfite mode and converted to BAM format and sorted using Sambamba

(v0.6.0). Bam files were annotated for duplicates using Picard Tools’ MarkDuplicates Jar

(v1.92). Novomethyl (v1.10) was used in conjunction with in-house scripts (samtools v1.6 and

bedtools v2.25.0) to determine methylation of each CpG as described in Section “NovoMethyl

—Analysing Methylation Status” Section of the Novoalign documentation (http://www.

novocraft.com/documentation/novoalign-2/novoalign-user-guide/bisulphite-treated-reads/

novomethyl-analyzing-methylation-status/).

Quality control. Using an in-house script, libraries were filtered according to a delta

CT and 100K read count threshold to account for suitable library depth. Libraries over the

expected number of copy number variants were filtered out to control for chromothripsis and

shattered cells.

Copy number calling. Copy number changes for SA501 were called using the same sc-

WGBS DNA methylation data (copy number calling from the DLP protocol [4] largely

matches the sc-WGBS copy number calling for passage 2). Control Free-c (v7.0) was used to

copy number variant call on processed BAMs. The following settings were used: ploidy: 2, win-

dow and telocentromeric: 500000, sex: XY, minExpectGC: 0.39 and maxExpectedGC: 0.51.

In-house bulk whole-genome bisulfite sequencing (SA501, passages 1 and

10)

Whole-genome bisulfite library construction for Illumina sequencing. To track the effi-

ciency of bisulfite conversion, 10 ng lambda DNA (Promega) was spiked into 1 μg genomic

DNA quantified using Qubit fluorometry and arrayed in a 96-well microtitre plate. DNA was

sheared to a target size of 300 bp using Covaris sonication and the fragments end-repaired using

DNA ligase and dNTPs at 30 C for 30 min. Repaired DNA was purified using a 2:1 AMPure XP

beads-to-sample ratio and eluted in 40 μL elution buffer in preparation for A-tailing; adenosine

was then added to the 3’ end of DNA fragments using Klenow fragment and dATP incubated at

37 C for 30 min. Following reaction clean-up with magnetic beads, cytosine methylated paired-
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end adapters (5’-AmCAmCTmCTTTmCmCmCTAmCAmCGAmCGmCTmCTTmCmCGATmCT-3’

and 3’-GAGmCmCGTAAGGAmCGAmCTTGGmCGAGAAGGmCTAG-5’) were ligated to the

DNA at 30˚C, 20 min, and adapter-flanked DNA fragments bead purified. Bisulfite conversion

of the methylated adapter-ligated DNA fragments was achieved using the EZ Methylation-Gold

kit (Zymo Research) following the manufacturer’s protocol. Seven cycles of PCR using HiFi poly-

merase (Kapa Biosystems) were used to enrich the bisulfite-converted DNA and introduce fault-

tolerant hexamer barcode sequences. Post-PCR purification and size-selection of bisulfite-con-

verted DNA were performed using 1:1 AMPure XP beads. To determine final library concentra-

tions, fragment sizes were assessed using a high-sensitivity DNA assay (Agilent) and DNA

quantified by Qubit fluorometry. Where necessary, libraries were diluted in elution buffer sup-

plemented with 0.1% Tween-20 to achieve a concentration of 8 nM for Illumina HiSeq2500 flow

cell cluster generation.

Data alignment and methylation calls. FASTQ files were trimmed with TrimGalore

(0.4.1) and then input into Bismark (0.14.4), aligning with bowtie2 (2.2.6). With the output

BAM, we used samtools (1.3) to sort by name, fix mates, sort by position, remove duplicates,

and then finally sort by name once again and filter out reads with a mapping quality of 10 or

less. We then ran the resulting BAM files through the bismark_methylation_extractor script

that accompanies Bismark to call methylation sites. All tools were run on all default settings,

with changes made only to increase run speed.

Differentially methylated CpG Islands. Differentially methylated CpG islands between

bulk samples from tumour xenograft passages 1 and 10 were obtained via Fisher’s exact test

considering all CpG islands with coverage greater than or equal to than five reads. The Benja-

mini-Hochberg procedure was used to correct for multiple testing.
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