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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems,
such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological
variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well
understood.

Results: We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures
associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer
tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard
quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease
dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core
gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C),
which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly
conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient
tissues.

Conclusions: The method and conditions of tumor dissociation influence cell yield and transcriptome state and are
both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell
studies, including components of surface immune recognition such as MHC class I, may be especially confounded.
We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq
experiments.
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Introduction
Recent advancements in sequencing technologies have
allowed for RNA sequencing at single-cell resolution, which
can be used to interrogate features of tumor tissues that
may not be resolved by bulk sequencing, such as intratu-
moral heterogeneity, microenvironmental architecture,
clonal dynamics, and the mapping of known and de novo
cell types. Due to the sensitivity of single-cell RNA sequen-
cing (scRNA-seq), small changes in gene expression can
dramatically influence the interpretation of biological data.
scRNA-seq data is also subject to technical and biological
noise [1, 2]. The inherent nature of the transcriptome is
transient and dynamic, reflecting the ability of cells to
quickly respond to their environment. In addition, the tran-
scriptional behavior of single cells can deviate profoundly
from the population as a whole, and gene expression pulse
patterns have been shown to contribute significant noise
levels to scRNA-seq data [3]. Inherent variations in tissue
composition, cell quality, and cell-cell variability can also
make it difficult to confidently interpret scRNA-seq data.
While current technologies attempt to mitigate noise from
amplification during library construction by the incorpor-
ation of unique molecular identifiers (UMIs) during cDNA
synthesis [4], this does not address changes to the transcrip-
tome prior to reverse transcription. High-quality scRNA-
seq data requires highly viable single-cell suspensions with
minimal extracellular components, such as debris. Standard
sample preparation methods for solid tissues require en-
zymatic and mechanical dissociation and, depending on the
tissue origin, density, disease state, elastin, or collagen con-
tent, may require long enzymatic digestion and/or vigorous
mechanical disruption. Transcriptional machinery remains
active at 37 °C, and extended incubation at high tempera-
tures may introduce gene expression artifacts, independent
of the biology at the time of harvest. Moreover, extended
incubation at higher temperatures in the absence of nutri-
ents or anchorage, or harsh dissociation, may induce apop-
tosis or anoikis, polluting the viable cell population or
generating low-quality suspensions [5]. Therefore, it is im-
perative to characterize the inherent variation and potential
effects of cell isolation methods on the transcriptomic pro-
files of tissues. Recently, it has been shown that a serine
protease (subtilisin A) isolated from a Himalayan glacier-
resident bacterium, Bacillus lichenformis, is suitable for dis-
sociation of non-malignant renal tissues at 4–6 °C and can
reduce scRNA-seq artifacts in these tissues, including redu-
cing global and single-cell gene expression changes [6].
Given the heterogeneous nature of tumor tissue [7–9],

and the potential application of scRNA-seq in studying
the complex biology of cancer including the tumor
microenvironment [10], tumor heterogeneity [9], and
drug response [11], we sought to determine the effects
of enzymatic dissociation and temperature on gene ex-
pression artifacts in tumor tissues and cell lines. Here,

using a diverse scRNA-seq dataset of 48 samples and
155,165 cells comprising patient cancer tissues, patient-
derived breast cancer xenografts (PDXs), and cancer cell
lines, we highlight the inherent variation in scRNA-seq
quality control metrics across samples and constituent
cell types in patient tumor samples. We identify a sub-
population of dead cells that would not be removed
through standard data filtering practices and quantify
the extent to which their transcriptomes differ from live
sorted cells. We identify a further sub-population that
represents transcriptomically dying cells, expressing in-
creased major histocompatibility complex (MHC)-class I
genes. We identify a core gene set of immediate, heat
shock, and stress response genes associated with collage-
nase dissociation, highly conserved across cell and tissue
types, and which are minimized by dissociation at cold
temperature. These findings may significantly affect bio-
logical interpretation of scRNA-seq data and should be
taken into careful consideration when analyzing single-
cell experiments.

Results
Single-cell RNA sequencing of 155,165 cells
To uncover transcriptional variation and responses to
dissociation method, we generated scRNA-seq data for
155,165 single cells across a range of substrates, cancer
types, dissociation temperatures, and tissue states (Fig. 1),
using the 10x Genomics Chromium v3 platform [13].
scRNA-seq was performed on cells from patient sam-
ples, PDXs, and cell lines across ovarian, lymphoid cell,
and breast cancers, including fresh and viably frozen
samples dissociated at 37 °C or 6 °C and cells incubated
at 6 °C, 24 °C, 37 °C, or 42 °C (Fig. 1). We began by
examining a set of commonly used quality control (QC)
metrics across all 48 sequencing experiments (Fig. 1c),
including the total number of genes detected, percentage
of transcripts mapping to the mitochondrial genome,
and total number of UMIs sequenced. We observed sig-
nificant variation across these metrics, in particular bi-
and tri-modal distributions of mitochondrial gene per-
centages across this varied sample set. This variable
mitochondrial gene content was also observed in pub-
licly available datasets from 10x Genomics (Add-
itional file 1: Figure S1).
Conscious of the possibility of murine stromal cell con-

tamination in PDX samples, we classified cells as mouse
or human based on alignment metrics. Of the 99,244 PDX
cells sequenced, 4942 were reliably identified as mouse
cells, with large inter-sample variation (Additional file 1:
Figure S2). We found 372 cells across primary tumor and
cell line samples were misidentified as murine compared
to 69,608 cells identified as human, suggesting this ap-
proach to detecting murine contamination has a modest
false-positive rate of 0.5%. As expected, murine cells
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Fig. 1 (See legend on next page.)
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scored consistently lower across a range of standard QC
metrics (percentage of mitochondrial counts, total genes
detected, total UMIs detected) when aligned to the human
genome (Additional file 1: Figure S3).

Transcriptomic landscape of live, dead, and dying cells
Given the bi- and tri-modal distributions of mitochon-
drial gene count percentages apparent in the 48 experi-
ments and previous studies’ assertions that high
mitochondrial gene content is indicative of dead and
dying cells [14, 15], we next sought to determine the
contribution of dead and dying cells to the variation ob-
served in QC metrics in Fig. 1. In order to induce clas-
sical cell death pathways, we used TNF-α [16, 17] to
treat the non-tumorigenic, lymphoblastoid cell line
GM18507 and FACS-sorted cells into dead or dying
fractions based on PI/annexin V positivity (Fig. 2a), as
well as a live, untreated fraction. Notably, cell yield from
scRNA-seq data was highly dependent on the cell status,
with 8597 live cells recovered but only 1280 and 885
dead and dying respectively compared to targeted num-
bers of 3000 cells.
A principal component analysis (PCA) following mu-

tual nearest neighbors (MNN) correction [18] demon-
strated the cells approximately segregating along the
first principal component (PC1) by cell status (Fig. 2b),
albeit with high levels of heterogeneity in overlap. Indeed,
PC1 closely tracked the mitochondrial gene content of the
cells (Fig. 2c), being significantly higher in dead cells (me-
dian 29.9%) compared to both dying cells (median 3.13%,
p = 1.17e−126) and live cells (median 3.4%, p = 4.65e−153)
as shown in Fig. 2d. This observation justifies the practice
of excluding cells with very high mitochondrial gene con-
tent as being likely dead cells.
Having observed that the transcriptomes of the differ-

ent cell conditions are not entirely distinct, we sought to
discover the extent of mixing between transcriptomic
states and whether live cells and dead cells that appear
transcriptomically “healthy” (i.e., would ordinarily pass
QC) are distinguishable. Using hierarchical clustering
(methods), we clustered the cells into three groups that
approximately track PC1 (Fig. 2e). Interestingly, these
three groups show variable composition in terms of cell
states, with cluster 1 being comprised mainly of live cells
(86% live, 8.5% dying, 5.1% dead), cluster 2 containing
an increased proportion of dying and dead cells (68%
live, 7.5% dying, 24% dead), and cluster 3 comprised

mainly of dead cells (5.9% live, 6.7% dying, 87% dead). Fur-
thermore, we observed a step change increase in mito-
chondrial gene content between clusters (Fig. 2g), with
cluster 1 having the lowest (median 3.13%), followed by
cluster 2 having a significant increase (median 26%, p = 0)
and cluster 3 having a significant increase beyond that
(median 82.2%, p = 2.35e−149). Differential expression
analysis between these clusters revealed a significant up-
regulation in stress-associated pathways such as MHC
class I (Fig. 2h) in cluster 2 compared to clusters 1 and 3.
MHC class I genes are involved in antigen presentation to
T cells, but are also expressed in many cell types and are
induced in response to stress stimuli and contain heat
shock-inducible elements [19].
Together, these results suggest a model whereby clus-

ter 1 represents transcriptomically “healthy” cells, cluster
2 represents transcriptomically stressed cells that upreg-
ulate stress pathways and have increased mitochondrial
gene content (due to either genome degradation or per-
meable membrane causing loss of cytoplasmic mRNA,
or increased metabolic demands), and cluster 3 repre-
sents transcriptomically dead cells whereby the genome
is degraded, leaving majority of mitochondrial tran-
scripts. Importantly, cells that are FACS sorted as either
live, dying, or dead are present in all three clusters,
highlighting that the transcriptomic state of the cell is
not necessarily the same as the surface marker state
(though the two are correlated). Such concepts are rem-
iniscent of “pseudotime” in single-cell developmental
biology, whereby developmentally ordering cells tran-
scriptomically can lead to early or late cells being placed
at variable positions along the pseudotime trajectory [20,
21]. Indeed, PC1 from Fig. 2a approximates a pseudo-
time trajectory through the data, which tracks transcrip-
tomically healthy cells to transcriptomically dead cells
with increasing PC1 values.
Finally, we sought to determine if a sorted dead cell

that appears transcriptomically healthy remains distin-
guishable from a sorted live cell in the transcriptomically
healthy group. Using only cells in cluster 1, we further
subsetted them to pass a strict set of QC filters (at least
103 total genes detectable, percentage of mitochondrial
content between 1 and 10) and performed a differential
expression analysis between cells sorted as live and dead
in this group. Of the 10,537 genes retained for analysis,
2130 (20.2%) were found to be differentially expressed
(Fig. 2i), including downregulation of IFITM1 in dead

(See figure on previous page.)
Fig. 1 Overview of 48 single-cell experiments generated in this study. a Schematic showing the various substrates used to generate the 48
single-cell experiments in this dataset. b Descriptions of the cell status, substrate, cancer type, dissociation temperature, and tissue state of each
sample in the dataset. c Substantial variability in three key QC metrics (number of genes detected, percentage of counts mapping to the
mitochondrial genome, number of UMIs sequenced) across all experiments. d Embedding of all 48 single-cell experiments to a low-dimensional
projection with uniform manifold approximation and projection [12]
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cells. To compare this type of variation to the inter-cluster
transcriptomic variation, we performed a second differen-
tial expression analysis between clusters 1 and 2, finding
8835 of 10,933 (80.8%) genes significantly differentially
expressed. Furthermore, the effect sizes were significantly
larger for the inter-cluster comparison than the within-
cluster 1 live-dead comparison as demonstrated by the
quantile-quantile plot of absolute effect sizes in Fig. 2j. To-
gether, these results suggest that though there are gene
expression differences between dead and live sorted cells
within cluster 1, the magnitude of expression variation is
small compared to transcriptomically stressed clusters.

Dissociation with collagenase at 37 °C induces a distinct
stress response in single-cell transcriptomes
To uncover the effect of digestion temperature on the
transcriptome, we performed a differential expression
analysis on the 23,731 cells found by combining all ex-
periments measured in a PDX or cell line at either 6 °C
or 37 °C. We removed any samples corresponding to pri-
mary tumors as we discovered that yield of constituent
cell types was affected by digestion temperature (Add-
itional file 1: Figure S6), which would confound our dif-
ferential expression results. After retaining genes with at
least 10 counts across all cells, we performed differential
expression analysis with edgeR [22], while controlling
for the sample-of-origin.
We found that of the 19,464 genes retained for analysis,

11,975 (62%) were differentially expressed at a Benjamini-
Hochberg-corrected false discovery rate (FDR) of 5%. We
defined a core set of genes meaningfully perturbed by di-
gestion temperature as those significantly differentially
expressed as above, but with an absolute log fold change of
at least 1.5. Therefore, for a gene to be included under these
criteria, it must be differentially expressed and its abun-
dance increased or decreased by at least 50% by digestion
temperature. This produced a core gene set of 512 genes,
of which 507 were upregulated at 37 °C and the remaining
5 downregulated. This gene set includes multiple canonical
stress-related genes such as FOS, FOSB, ATF3, and heat

shock proteins (HSPs) (Fig. 3a), expression of which have
shown to be induced by collagenase dissociation in a subset
of muscle cells [23]. A UMAP embedding of the cells col-
ored by dissociation temperature and the expression of sev-
eral key genes (FOS, JUNB, NR4A1, Fig. 3b) further
demonstrates the digestion temperature-specific induction
of the expression of these genes. Noting the large number
of HSP proteins significantly upregulated at the 37 °C colla-
genase digestion, we examined their expression in the
MDA-MB-231 samples incubated at different temperatures
(6 °C, 24 °C, 37 °C, 42 °C). The upregulation of the HSP
genes in the 512 core gene set typically follows a step in-
crease between 37 and 42 °C incubation rather than a grad-
ual increase with increasing temperature (Additional file 1:
Figure S4), implying their induction at 37 °C collagenase di-
gestion is due to a different mechanism than the digestion
temperature alone, consistent with previous results [23].
We subsequently performed a pathway enrichment ana-

lysis on the differential expression results, searching for
enrichments in given hallmark pathways [24] (Fig. 3c). Of
particular note was TnF signaling via NF-κB, of which
46.5% of annotated pathway genes were included in the
core set of 512 genes (Additional file 1: Figure S5). Further
enrichment of stress-associated pathways including hyp-
oxia, apoptosis, and inflammatory response is further indi-
cative of collagenase dissociation at 37 °C as inducing a
stress response on the transcriptomes of single cells.

Transcriptomic stress response is induced by both
digestion time and digestion temperature
To determine whether the gene signature identified
above was induced due to the longer digestion time re-
quired for complete collagenase dissociation or due to
the enzyme itself, we conducted a time course experi-
ment, incubating breast PDX tissue with collagenase or
cold protease for up to 3 h. Cells released into the super-
natant were sampled at 30 min, 1 h, 2 h, or 3 h.
Examining genes identified in the core gene set above,

we found striking upregulation of the core gene set be-
tween collagenase and cold protease digestion at all

(See figure on previous page.)
Fig. 2 Transcriptomic landscape of live, dead, and dying cells. a FACS analysis showing gating strategy for untreated, live cells (PI−/annexin V−)
or TNFα-treated dying cells (PI/annexin V+) and dead cells (PI+/annexin V+). b PCA projection of the three cell conditions showing approximate
segregation of cell status along the first principal component (PC1), with live and dying cells enriched at lower PC1 values and dead cells
enriched at higher values. c PCA projection colored by the percentage mitochondrial genes (“% transcriptome mitochondrial”) shows significant
increase along the PC1. d Dead cells exhibit significantly higher percentage of the transcriptome as mitochondrial compared to both live and
dying cells. e Unsupervised clustering of the gene expression profiles clusters the cells into three groups, approximately tracking both PC1 of the
data and the percentage of transcriptome mitochondrial. f The composition of each cluster demonstrates that cluster 1 is primarily composed of
live cells and cluster 2 a mix of live, dying, and dead cells, while cluster 3 is composed mainly of dead cells. g The percentage of transcriptome
mitochondrial is significantly different between the three clusters, with a step increase in proportion moving from cluster 1 to 2 and 2 to 3. h
Cluster 2 significantly upregulates the MHC class I gene set, suggesting it represents stressed or pre-apoptotic cells. i Differential expression
analysis of transcriptomically “healthy” cells within cluster 1 reveals residual differences between cells sorted as live and dead. j The distribution of
absolute effect sizes (log fold change) of live vs. dead cells within cluster 1 (x-axis) compared to between clusters 1 and 2 (y-axis) demonstrates
the residual effect on the transcriptome of being live/dead sorted is small compared to the inter-cluster expression variance

O’Flanagan et al. Genome Biology          (2019) 20:210 Page 6 of 13



digestion times (Fig. 4a). This demonstrates that the
choice of digestion enzyme (collagenase vs. cold protease)
has an impact on the cells’ transcriptional response, inde-
pendent of the length of digestion. However, a subset of
the core gene set was further upregulated with increasing
digestion time under collagenase digestion (Fig. 4a). To
quantify this, we performed several transcriptome-wide
pairwise differential expression analyses to discern the ef-
fect of digestion conditions on transcriptomic response.
Firstly, we compared a 30-min vs. 2-h digestion using only
collagenase (Fig. 4b). Of the 18,734 genes retained for dif-
ferential expression analysis, 8064 (43%) were significantly
differentially expressed (< 5% FDR), with 4917 genes
upregulated at 2 h and 3147 downregulated. Of the
512 genes in the core dissociation-associated gene set,
420 (82%) were significantly differentially expressed
(376 upregulated, 44 downregulated).
In contrast, repeating this analysis with cells digested

using cold protease only revealed far fewer genes (2500
of 16,340, 15.3%) differentially expressed between the
two digestion time points, with 35.9% of the core gene
set (70 upregulated, 114 downregulated) showing differ-
ential expression over time.

Secondly, we compared collagenase vs. cold protease di-
gestion at 30min only (Fig. 4c). Of the 18,242 genes
retained for differential expression analysis, 5039 (27.6%)
were significantly differentially expressed (< 5% FDR), with
2173 genes upregulated at 2 h and 2866 downregulated. Of
the 512 genes in the core collagenase-associated gene set,
306 (59.8%) were significantly differentially expressed (223
upregulated, 83 downregulated). Similarly, comparing colla-
genase vs. cold protease digestion at 2 h only (Fig. 4d) found
7887 of 17,345 genes (45.5%) differentially expressed (4207
upregulated, 3680 downregulated), with 429 of 512 (83.8%)
genes from the core gene set being differentially expressed
(362 upregulated, 67 downregulated). These results robustly
demonstrate that both digestion time and digestion method
contribute to transcriptomic stress response in single can-
cer cells. Interestingly, a highly similar set of genes are af-
fected by both digestion time and digestion method, with a
large correlation (Spearman’s ρ = 0.8) between the log fold
changes of contrasting 2-h to 30-min digestion (collagenase
only) as compared to a collagenase vs. cold protease diges-
tion at 30min only (Fig. 4c). These results suggest that the
cellular response to digestion in single-cell transcriptomic
experiments converge on a common set of pathways.

Fig. 3 Dissociation with collagenase at 37 °C induces a distinct stress response in 23,731 cells from PDX samples that is minimized by dissociation at 6 °C.
a The top 40 genes (by log fold change) from the 11,975 identified as significantly differentially expressed between cells digested at 6 °C and 37 °C. b
UMAP plots of 23,731 cells colored by digestion temperature (top) then by normalized expression of three key stress response genes (FOS, JUNB, NR4A1)
demonstrate a distinct concordance between temperature and induction of the stress gene signature. Expression values are log normalized counts
winsorized to [0, 2) then scaled to [0, 1). c Pathway analysis of differentially expressed genes with the MSigDB hallmark gene sets highlights induction of
genes involved in NF-κB signaling at 37 °C digestion with 46.5% of 200 genes annotated in the pathway being found in the 512 core gene set
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Conserved stress response to collagenase dissociation
method in breast and ovarian patient tissues
Having derived a core gene set of stress and heat shock
genes induced in PDX samples during dissociation with
collagenase, we next examined the effect of dissociation
method on recovery and transcriptomes of constituent
cells of the tumor microenvironment in breast and ovar-
ian patient samples. Histology and FACS analysis re-
vealed a complex and variable tumor microenvironment
(Fig. 5a, b). Dissociation of ovarian cancer sample with
cold protease yielded enhanced capture of lymphocytes
including T cells, cytotoxic T cells, and NK cells (Fig. 5b,
Additional file 1: Figure S6). We generated scRNA-seq
data of 2 high-grade serous ovarian (HGSC) and 3 breast
cancer samples (Additional file 1: Table S1) dissociated
using collagenase at 37 °C or cold protease at 6 °C as de-
scribed above. Total cell yield was highly variable, ran-
ging from 282 to 9640 cells across samples. Cells were
subsequently assigned to a range of tumor microenvir-
onment cell types using CellAssign [25], assuming a set

of common marker genes for cell types (Additional file 1:
Table S2, Table S3). A UMAP project of the data
(Fig. 5c) demonstrates the broad range of cell types iden-
tified from the scRNA-seq data, including epithelial cells,
structural cell types such as endothelial and myofibro-
blast cells, and an array of immune cell type such as B
cells, T cells, monocyte/macrophage populations, and
plasma cells, consistent with FACS analysis (Fig. 5b).
While enhanced capture of certain lymphocyte popula-
tions was apparent in ovarian samples dissociated at
6 °C, overall microenvironment composition was highly
variable both between patients, reflected in histological
analysis (Fig. 5a), and dissociation protocols (Add-
itional file 1: Figure S6); no consistent loss or gain of cell
types was observed between conditions in all samples.
To uncover whether the transcriptional response to

37 °C collagenase dissociation identified in PDX models
is conserved in primary tumor samples, we next per-
formed a differential expression analysis comparing the
dissociation methods separately for each cell type

Fig. 4 Disentangling the effects of digestion time and digestion method on transcriptomic response. a Mean normalized expression of genes in
the core gene set as a function of digestion time colored by digestion temperature. Digestion by collagenase causes upregulation of the gene
set at all time points, with a subset showing further upregulation as digestion time increases. B Log fold changes of a 2-h vs. 30-min digestion for
collagenase only as a function of log counts-per-million. c Log fold changes of a collagenase vs. cold protease digestion at 30-min digestion time
as a function of log counts-per-million. d Log fold changes of a collagenase vs. cold protease digestion at 2-h digestion time as a function of log
counts-per-million. e Log fold changes of a 2-h vs. 30-min digestion (collagenase only) compared to a collagenase vs. cold protease digestion at
2 h demonstrate a large overlap between genes affected (ρ = 0.8)
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Fig. 5 Conserved stress response to the collagenase dissociation method in breast and ovarian patient tissues. a Histology of ovarian (top) and breast
(bottom) cancer patient samples highlighting the architecture of the tumor microenvironment. b FACS analysis of ovarian tumor tissue dissociated at
37 °C with collagenase or 6 °C with cold active protease and stained with markers for tumor cells (EpCAM), endothelial cells (CD31), fibroblasts (FAP),
lymphocytes (CD45), B cells (CD19), NK cells (CD56), and T cells (CD8, CD3). c UMAP of combined scRNA-seq experiments of ovarian cancer (n = 2) and
breast cancer (n = 3) patient tissues with cell type assignments according to known gene markers for each cell type. d The top 40 genes from the
gene set derived in Fig. 3 as expressed in each cell type in breast and ovarian patient samples. Black circles around points denote significance at 5%
FDR. e Pathway analysis of the differential expression results with the MSigDB hallmark gene sets for each cell type
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(Fig. 5d). We found large consistent upregulation of the
512 genes identified in the core collagenase-associated
gene set in PDX samples, with 61.7 to 78.1% upregulated
across cell types and 8.6 to 54.9% significantly upregu-
lated (Additional file 1: Table S4, Figures S7 and S8).
Though cell type-specific gene expression effects in re-

sponse to digestion method were evident (Additional file 1:
Figure S9), global pathway analysis of differentially expressed
genes for each cell type revealed conserved upregulation in
NFKB signaling, apoptosis and inflammatory pathways as
the most upregulated in all cell types (Fig. 5e). Smaller cell
type-specific effects observed included increased hedgehog
and apical surface pathways in breast epithelial cells and re-
active oxygen species pathways in cytotoxic T cells and
myofibroblasts (Fig. 5e). Taken together, these findings indi-
cate that all cell types exhibit some level of stress response
to dissociation with collagenase, with some cell types exhi-
biting cell type-specific responses.

Discussion
The advent of single-cell sequencing technologies has
empowered the study of complex biological systems includ-
ing tissue microenvironments and tumor heterogeneity, as
well as the discovery of novel cell types otherwise difficult
to detect [1]. Current sequencing techniques require single-
cell suspensions for passage through microfluidic or micro-
well platforms, and the generation of single-cell suspensions
from solid tissues requires the enzymatic and mechanical
disruption of extracellular matrix and cell-cell contacts. To
date, the effect of these dissociation methods on the tran-
scriptome of single cells has been largely ignored, despite
the potential effects on the interpretation of scRNA-seq
data. Moreover, during both dissociation of tissues and pas-
sage through fluidic devices, cells can undergo stress, shear-
ing, anoikis, and apoptosis [26]. For this reason, efforts
must be made on both sample handling and bioinformatics
to ensure minimal noise and optimal filtration of data.
Here, we endeavored to describe the artifactual gene ex-
pression associated with tissue dissociation and dead or
dying cell populations. Using a large, diverse dataset, we
highlight the variability in key QC metrics, including the
percentage of mitochondrial genes, number of UMIs, and
number of genes detected. We identify sub-populations of
dead cells that express either high or low mitochondrial
genes, contrary to the notion that dead cells can be charac-
terized by their mitochondrial gene content alone. Import-
antly, cells that are FACS sorted as either live, dying, or
dead based on PI/annexin V staining are present in all three
clusters, highlighting that the transcriptomic state of the
cell is not necessarily the same as the surface marker state
(though the two are correlated). As noted, this is reminis-
cent of “pseudotime” orderings, with PC1 from Fig. 2a ap-
proximating a trajectory through the data that tracks
transcriptomically healthy cells to transcriptomically dead

cells with increasing PC1 values. Though expressing tran-
scriptomes similar to live, healthy cells, dead cells with low
mitochondrial content expressed significantly high levels of
MHC class I genes such as HLA-A, HLA-B, and B2M.
MHC class I genes are involved in antigen presenta-

tion to T cells, but are also expressed in many cell types
and are induced in response to stress stimuli and con-
tain heat shock-inducible elements [19]. In addition to
standard practices of excluding cells with high mito-
chondrial content, cells with induction of these MHC
class I genes may also be considered with caution. More-
over, interpretation of stress pathway expression in
single-cell studies, including components of surface im-
mune recognition such as MHC class I, may be espe-
cially confounded.
We identify a conserved collagenase-associated tran-

scriptional pattern including induction of stress and heat
shock genes, consistent with a transcriptional response
identified in a subset of muscle stem cells [23], and
which was minimized when samples were dissociated at
cold temperatures with a cold active serine protease. We
demonstrate that both digestion time and collagenase
contribute to the transcriptomic stress response in single
cancer cells. Therefore, the short incubation time neces-
sary for cold protease as well as the relatively stable tran-
scriptome captured by dissociation at cold temperatures
suggests this is a potential alternative to collagenase dis-
sociation for scRNA-seq experiments with tumor tissues.
We suggest that each tissue and dissociation method
should be assessed for dissociation-induced signatures
before undertaking large-scale scRNA-seq experiments.
Transcription of the above identified gene set as a re-

sult of sample preparation methods may mask their in-
duction due to other means. For example, JUN and FOS
are associated with cancer drug resistance and metastatic
progression [27–29]. Moreover, though less stark as the
core collagenase-associated gene set, cell type-specific ef-
fects were observed during dissociation and included in-
creased hedgehog and apical surface pathways in breast
epithelial cells and reactive oxygen species pathways in
cytotoxic T cells and myofibroblasts. Taken together,
these findings indicate that all cell types exhibit some
level of stress response to dissociation with collagenase,
with some cell types exhibiting cell type-specific re-
sponses. These stress responses, which may significantly
influence the interpretation of scRNA-seq data, are min-
imized by dissociation at cold temperatures.

Methods
Ethical approval
The Ethics Committees at the University of British
Columbia approved all the experiments using human re-
sources. Written consent from patients and samples
were collected under tumor tissue repository (University
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of British Columbia BC Cancer Research Ethics Board
H06-00289) and Neoadjuvant PDX (University of British
Columbia BC Cancer Research Ethics Board H11-01887)
protocols. All experimental methods comply with the
Helsinki Declaration. All animal studies were approved
by the Animal Care Committee at the University of Brit-
ish Columbia.

Specimen collection
After informed consent, tumor fragments from pa-
tients undergoing excision or diagnostic core biopsy
were collected. Tumor materials were processed as
described in [30].

Patient-derived xenografts
Tumor fragments were transplanted subcutaneously into
female NOD/SCID interleukin-2 receptor gamma null
(NSG) and NOD Rag-1 null interleukin-2 receptor
gamma null (NRG) mice as previously described [30].

Tissue dissociation at 37 °C
Tumor fragments from patient breast and ovarian samples
and PDXs were incubated for 2 h with a collagenase/hyal-
uronidase enzyme mix in serum-free Dulbecco’s modified
Eagle’s medium (DMEM) at 37 °C with intermittent gentle
trituration with a wide-bore pipette tip. Cells were resus-
pended in 0.25% trypsin-EDTA for 1min followed by
neutralization with 2% FBS in Hank’s balanced salt solu-
tion (HBSS) and centrifugation. Cells were resuspended in
2% FBS/HBSS and filtered through a 40-μm filter. Where
necessary, dead cells were removed using MACS Dead
Cell Removal Beads (Miltenyi Biotec) according to the
manufacturer’s instructions. Cells were centrifuged and
resuspended in 0.04% BSA/PBS and cell concentration ad-
justed for scRNA-seq. For time course experiment,
tissue was dissociated as above for 3 h with samples
taken at 30 min, 1 h, and 2 h.

Tissue dissociation at 6 °C
Tumor fragments were incubated for 30 min at 6 °C with
a serine protease, subtilisin A, derived from the Hima-
layan soil bacterium Bacillus lichenformis (Creative En-
zymes NATE0633) in PBS supplemented with 5 mM
CaCl2 and 125 U/ml DNAse, as described in [6, 31].
During dissociation, samples were gently triturated every
5 min using a wide-bore pipette. Cells were resuspended
in 0.25% trypsin-EDTA for 1min at room temperature,
neutralized with 2% FBS in HBSS, and filtered through a
40-μm filter. Following dissociation, samples were proc-
essed for scRNA-seq as described above. For the time
course experiment, tissue was dissociated as above for 3
h with samples taken at 30 min, 1 h, and 2 h.

Cell culture
GM18507 cells were maintained in RPMI-1640 supple-
mented with 10% FBS. MDA-MB-231 cells were main-
tained in DMEM supplemented with 10% FBS. Cells
were trypsinized using 0.05% trypsin-EDTA and placed
on ice. Cells were then incubated for 2 h at 6 °C, 24 °C,
37 °C, or 42 °C before being harvested for scRNA-seq.
All cell lines used were authenticated by Genetica DNA
Laboratories.

Flow cytometry
GM18507 cells were treated with or without 100 ng/ml
TNFα for 24 h before being stained with propidium iodide
and annexin V and sorted into dying, dead, or live popula-
tions according to single, double, or negative staining re-
spectively using a FACS Aria Fusion (BD Biosciences).

Single-cell RNA sequencing
Single-cell suspensions were loaded onto a 10x Genom-
ics Chromium single-cell controller and libraries pre-
pared according to the 10x Genomics Single Cell 3′
Reagent kit standard protocol. Libraries were then se-
quenced on an Illumina Nextseq500/550 with 42-bp
paired end reads, or a HiSeq2500 v4 with 125-bp paired
end reads. 10x Genomics Cell Ranger 3.0.2 was used to
perform demultiplexing, counting, and alignment to
GRCh38 and mm10.

Removal of murine contamination from patient-derived
xenograft samples
To identify murine cells in the PDX samples, we re-ran
CellRanger version 3.0.2 aligning cells to both GRCh38
and mm10 (separately). We then considered all cells for
which a valid barcode was identified in the raw (unfil-
tered) data for either alignment, and counted the num-
ber of reads mapping to each genome for each cell. A
cell was subsequently designated as a contaminating
mouse cell if more reads mapped to mm10 than
GRCh38, and a human cell otherwise.

Analysis of existing 10x datasets
The processed data for the datasets nuclei 900, pbmc4k,
t 4 were downloaded from the 10x genomics website
https://support.10xgenomics.com/single-cell-gene-ex-
pression/ datasets/2.1.0/ on April 30, 2019.

Differential expression and core heat-related gene set
All differential expression analyses were performed with
edgeR [22] version 3.24.3 using the quasi-likelihood F
test as was the top-performing method in a recent re-
view [32]. We included the patient/xenograft/cell line ID
in the design matrix to account for unwanted technical
and biological variation. In every case, we only consid-
ered genes with minimum 10 counts across all cells. We
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defined the core set of genes as those with FDR-adjusted
Q value < 0.05 and with |log2(fold change)| > log 2(1.5)—
in other words, we require the average change in expres-
sion to be either 50% greater or less than the baseline to
include the gene. Overall, this gave 192 genes (182 upreg-
ulated and 10 downregulated). Pathway enrichment was
performed using a camera [33] with trend.var. = TRUE on
the Hallmark gene set [24] retrieved from http://bioinf.
wehi.edu.au/software/MSigDB/human_H_v5p2.rdata with
timestamp 2016-10-10. Differential expression for the di-
gestion enzyme vs. time comparisons were performed as
above. Only pairwise comparisons were considered, e.g.,
for the 2 h vs. 30min collagenase only comparison, the
dataset was subsetted to contain only these cells and dif-
ferential expression analysis was performed.

Cell type assignments
Cell types were determined using CellAssign, a probabil-
istic model that annotates scRNA-seq data into pre-
defined and de novo cell types assuming a set of markers
known marker genes for cell types [25]. Briefly, CellAs-
sign takes a pre-defined set of marker genes for each cell
type in the data and probabilistically models a cell as be-
ing of a certain type if it has increased expression of its
marker genes. A given gene can be a marker for multiple
cell types, and a marker gene can be expressed in cell
types other than those for which it is a marker, albeit at
lower levels. The marker genes used in this study are
listed in Additional file 1: Table S2 and Table S3.

Clustering of live, dying, and dead cells
Cells were hierarchically clustered using the hclust func-
tion in R applied to the 10-dimensional output of MNN,
and clusters assigned using the cutree function.
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