
Campbell et al. Genome Biology           (2019) 20:54 
https://doi.org/10.1186/s13059-019-1645-z

METHOD Open Access

clonealign: statistical integration of
independent single-cell RNA and DNA
sequencing data from human cancers
Kieran R. Campbell1,2,3, Adi Steif1,4, Emma Laks1,4, Hans Zahn1,7, Daniel Lai1, Andrew McPherson1,
Hossein Farahani1, Farhia Kabeer1, Ciara O’Flanagan1, Justina Biele1,6, Jazmine Brimhall1,6,
Beixi Wang1,6, Pascale Walters1, IMAXT Consortium8, Alexandre Bouchard-Côté2†, Samuel Aparicio1,6†

and Sohrab P. Shah1,5,6*†

Abstract

Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic
alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel
single-cell DNA and RNA measurements from independent cell populations must be mapped for
genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones
using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply
clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines
and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone.

Background
Recent advances in genomic measurement technologies
have allowed for unprecedented scalable interrogation of
the genomes and transcriptomes of single cells [1, 2]. Such
technologies are of particular interest in cancer, enabling
measurement of cell-autonomous properties which con-
stitute tumors as a whole. Molecular phenotyping at the
single-cell level enables reconstruction of tumor life his-
tories through phylogenetic analysis [3, 4], assessment of
cell types in the tumor microenvironment [5], and quan-
tification of intra-tumoral heterogeneity and its clinical
implications [6, 7].
Theoretically, combined assays sequencing both RNA

andDNA from the same single cell will provide ameasure-
ment of genomic alterations impacting transcriptional

*Correspondence: shahs3@mskcc.org
†Alexandre Bouchard-Côté, Samuel Aparicio and Sohrab P. Shah are joint
senior authors.
1Department of Molecular Oncology, British Columbia Cancer Research
Centre, Vancouver, British Columbia, Canada
5Computational Oncology, Dept. of Epidemiology and Biostatistics, Memorial
Sloan Kettering Cancer Center, New York, NY, USA
6Department of Pathology and Laboratory Medicine, University of British
Columbia, Vancouver, British Columbia, Canada
Full list of author information is available at the end of the article

programs. This would yield a powerful single-cell level
genotype-phenotype read out, encoding relevant malignant
properties of clonal expansion, proliferation, and metas-
tasis. Moreover, drug responses in cancer are commonly
driven by positive and negative evolutionary selection of
mutation-induced phenotypes, but genome-independent
responses via dynamic epigenetic re-wiring of transcrip-
tional programs have also been observed [8]. Thus, mul-
timodal approaches assaying both DNA and RNA are
essential for comprehensive study of drug response.
While pioneering technologies such as G&T-seq [9]

and DR-seq [10] sequence both the DNA and RNA from
single cells, they measure few cells compared to assays
that sequence DNA or RNA alone such as Direct Library
Preparation (DLP [1]) or 10X genomics single-cell RNA-
seq [2], and thus provide only a limited view of each
tumor’s genomic and transcriptional heterogeneity. How-
ever, independently sampled single-cell measurements
introduce a new analytical challenge of how to associate
cells across each modality. Assuming a population struc-
ture with a fixed number of clones, this can be expressed
as a mapping problem, whereby cells measured with tran-
scriptome assays must be aligned to those measured with
a genome assay.
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Results
To address this mapping problem we introduce
clonealign, a statistical method to assign cells mea-
sured with single-cell RNA-seq to clones derived from
low-coverage single-cell DNA-seq (Fig. 1a).
In our approach, we assume clones are defined through

grouped cell subsets which share to a first approxima-
tion similar genomic copy number structure (e.g., through
phylogenetic reconstruction or dimensionality reduction
[11]). In order to relate the independent measurements,
we assume that an increase in the copy number of a
gene will result in a corresponding increase in that gene’s
expression and vice versa (Fig. 1b), a relationship previ-
ously observed in joint RNA-DNA assays in bulk tissues
[12] and at the single-cell level [9, 10, 13].
Based on this relationship, we formulate a statistical

model that explains the observed gene expression pattern
in terms of the copy number profile of a clone present in
the scDNA-seq data and thus assigns each cell to a clone
(see the “Methods” section). Furthermore, clonealign
can integrate the additional information given by alleleic
imbalance in expression caused by clone-specific loss-of-
heterozygosity (LOH) events when such data is available
(see the “Methods” section).
To test the robustness of the clonealign model, we

performed comprehensive simulations (see the “Methods”
section) across a wide range of scenarios. We began
by simulating datasets where a certain proportion of
genes have no CN-expression relationship and clone
assignments re-inferred using clonealign assuming
all genes had CN-dependent expression. We found that
clonealign is highly robust to variation in the under-
lying proportion of genes with CN-dependent expression
(Fig. 1c), with a median area under the receiver-operator
curve (AUC) greater than 0.8 even when only 30% of genes
have such a dosage effect. We next examined the accuracy
of clonal assignment as a function of genomic distinc-
tiveness, simulating data where 5, 10, 50, 100, 500, and
1000 genes resided in regions with different copy num-
ber between clones. We discovered that with as few as
10–50 genes distinguishing clones, clonealign can still
accurately assign cells to clones with a median AUC >

0.8 (Fig. 1d). We further found clonealign to be robust
across a range of realistic scenarious, including number of
clones, minor clone frequency, and RNA-seq data quality
(Additional file 1: Supplementary Text Section 1). We also
assessed the runtime efficiency of clonealign on a virtual
machine, finding the time required to perform inference
on a large dataset (10,000 cells, 800 genes, 16 clones) tak-
ing just over 40 min (Additional file 1: Supplementary text
section 1).
We next investigated the capacity of our approach to

reveal clone-specific phenotypic properties in real can-
cer data, using the serially passaged triple-negative breast

cancer patient-derived xenograft SA501 as a substrate.
SA501 exhibits a complex clonal architecture and repro-
ducible clonal dynamics over successive xenograft pas-
sages [14]. Thus, it is an ideal model system to exemplify
clone-specific gene expression. We previously described
single-cell DLP DNA-seq for SA501X3F [1], a copy num-
ber analysis of which identified three genotypically dis-
tinct clones (A, B, and C) with prevalences 82.3%, 10.8%,
and 6.9% respectively, with clone A further expanding in
subsequent passages.
We linked gene expression to clones in SA501 by gener-

ating single-cell RNA-seq from the SA501X2B xenograft
passage using the 10X genomics chromium platform
and assigned each cell to a clone (A, B, or C) using
clonealign. One thousand one hundred fifty-two sin-
gle cells post-QC (see the “Methods” section) were
assigned to clones A, B, and C with prevalence of 80.7%,
16.7%, and 2.6%, closely matching the expected propor-
tions inferred from the single-cell DNA-seq (82.3%, 10.8%,
and 6.9%). A genome-wide view of the clone-specific copy
number and expression profiles reveals a strong dosage
effect as modeled by clonealign in all but one region
(Fig. 2a, b). The clone assignments are highly confident for
clone A but some cells exhibit uncertainty of assignment
between clones B and C (Fig. 2c), reflecting a combination
of having more cells in clone A as well as more simi-
lar expression profiles of B and C but distinct expression
profiles of (B or C) relative to A. This latter explana-
tion is further supported in a PCA projection using only
genes residing in chromosome regions with variable copy
number between clones (Fig. 2d).
We next sought to validate the clonealign assign-

ments by both testing the internal consistency of our
model and with a held out, orthogonal data source. We
re-inferred the clones for SA501X2B using genes from all
chromosomes except 8 and 18. If both the clone assign-
ments and the expression-CNA assumption are correct,
then the expression of genes on the held-out chromo-
somes (8 and 18) should closely correlate with the copy
number profiles of those chromosomes. In all-but-one
copy number segments of the held-out chromosomes,
congruency between copy number levels and normalized
gene expression was observed: where the copy number
profile of a clone was higher, the normalized gene expres-
sion in that chromosome was also higher and vice-versa
(Fig. 2e). We formulated this into a statistical test asking if
given the clone assignments and copy number profiles we
can predict the expression of genes on the held-out chro-
mosomes better than can be expected at random, with a
null distribution established over permuted clone assign-
ments. Comparing clonealign clone assignments to
the null distribution with RMSE of predictions showed
significantly better predictive accuracy than could be
expected at random (p < 10−3, Additional file 2:
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Fig. 1 Assigning single-cell RNA-seq to clone-of-origin using clonealign. a Given independently sampled single-cell DNA- and RNA-seq from
the same tumor, the clonealign statistical framework assigns each cell’s gene expression profile to its clone-of-origin, uncovering transcriptional
signatures of clonal fitness. b To relate cells as measured in RNA-space to their clones measured in DNA-space, we assume a relationship between
gene copy number and gene expression (simulated data). c Simulations demonstrate the robustness of clonealign to the underlying
proportion of genes exhibiting a copy number dosage effect. Even if only 30% of genes have a clone-specific copy number effect on expression,
clones can still be accurately assigned with an average AUC > 0.8. d Simulations demonstrate clonal assignment is accurate even when as few as
10–50 genes lie in regions of differing copy number between clones, allowing clonal assignment from only small-scale genomic rearrangements
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Fig. 2 Inferring clone-dependent gene expression in SA501 triple-negative breast cancer xenograft. a Clone-specific copy number for ground truth
clones in scDNA-seq (bottom) and clone-specific z-score expression for clonealign inferred clones in scRNA-seq (top) for regions exhibiting
inter-clone copy number aberrations. In every copy number segment except one, when the copy number for a given clone is higher than others,
then on average the normalized gene expression is also higher. b The mean log expression as a function of copy number across all clones. c Clone
assignment probabilities for 1152 single-cell RNA-seq profiles across three clones. clonealign confidently assigns cells to clone A, with some
cells exhibiting high assignment uncertainty between clones B and C. d A PCA projection using only genes residing in copy number regions shows
the cells clustering by clone along components 2 and 4. e z-score normalized gene expression and copy number profiles for held-out data on
chromosomes 8 and 18 as a function of genomic position (gene index along chromosome). In all but one copy number segment, when the copy
number profile of a clone is higher, the normalized gene expression in that chromosome is also higher on average. f Differential expression analysis
for genes residing in regions whose copy number is identical between clones highlights downregulation of MHC class I proteins

Figure S1). We then added a further validation measure
using a loss-of-heterozygosity (LOH) analysis (see the
“Methods” section) to discover if clone-specific LOH
events observed in DNA space were also observed in RNA
space. A single allele resulting from a genomic LOH event
can only yield mono-allelically expressed transcripts [15].
Although the allele frequency data were sparse and low
coverage at germline heterozygous sites, we observed an
LOH event on chromosome 18 in clone B which was

mono-allelically expressed in the scRNA-seq (Additional
file 2: Figure S2). Finally, we quantified the robustness of
clonealign to input gene selection by incrementally
reducing the number of input genes both randomly and
in order of variability, finding close agreement with the
assignments using all genes (see the “Methods” section
and Additional file 2: Figures S3 and S4).
Having established the validity of the clone assignments,

we next sought to determine clone-specific phenotypes
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using gene expression as a proxy. We performed a
differential expression analysis comparing cells assigned
to clone A to those assigned to clones B and C using
Limma voom [16] using genes with greater than 500 total
counts in the dataset. Fifty-two percent of genes (314/594)
residing in clone-specific copy numbers (CSCN) regions
were differentially expressed compared to 28% of genes
in regions with identical copy number (ICN) regions
(1061/3757) (1905/8201). Clone A is distinguished by
loss of an entire X-chromosome, but it was previously
unknown whether the loss constituted the active or inac-
tive copy. We observed downregulation of X-inactive
specific transcript XIST (Additional file 2: Figure S5)—
expressed only on the inactive X chromosome—in clone
A, implying the retained chromosome is the active copy.
We next examined the differential expression of genes

residing in regions with identical copy number between
clones. By construction, these genes would not be
impacted by gene dosage in cis, butmay be altered through
signaling networks in trans where upstream transcrip-
tional regulators lie in copy number altered regions. We
found systematic downregulation of the MHC class I cell
surface proteins in clone A (Fig. 2f and Additional file 2:
Figure S6) along with β2 microglobulin (B2M), suggest-
ing a clone-specific deficiency in presenting intra-cellular
proteins to cytotoxic T cells, and therefore a putative
mechanism by which clone A progressively dominates the
SA501 xenograft tumors in subsequent passages. Loss of
MHC expression is amechanism of tumor immune escape
[17, 18], and our results indicate this may be selected for
despite the immune-deficient environment of the murine
host. Importantly, clone A did not exhibit LOH in any
HLA gene in clone A (Additional file 2: Figure S7), imply-
ing MHC class-I downregulation is due to transcriptional
pathway alterations.
We supplemented our differential expression analysis

with a variance component analysis ([19] and see the
“Methods” section) to partition gene expression varia-
tion into either clone-specific or intrinsic/residual. This
revealed genes whose expression variation was governed
by genomic state (clonality), such as CD44 antigen—
a marker of tumorigenic cancer cells [20]—of which
around a quarter of expression variation is clone-specific
(Additional file 2: Figure S8). To elucidate which path-
ways show clone-dependent regulation, we performed a
gene set enrichment analysis [21] on all genes ranked
by proportion of regulation explained by genomic state.
Clone-specific immune response (Fig. 2f ), including path-
ways involved in MHC class I-mediated antigen presenta-
tion were highly ranked. To discover if any transcriptional
states existed within clone assignments, we performed
an intra-clonal clustering of the scRNA-seq data using
SC3 [22] with k = 2 clusters and called cell cycle states
using Cyclone [23]. We found clusters within each clone

largely separated based on G2M score (Additional file 2:
Figure S9), implying the largest source of intra-clonal
variation corresponds to cell cycle stage.
We next applied clonealign to DLP scDNA-seq

and 10X genomics scRNA-seq data from two clonally
related high grade serous carcinoma (HGSC) cell lines,
derived from both ascites (OV2295R) and solid tumor
(TOV2295R) at relapse from the same patient [24]. We
constructed a single-cell phylogeny on the derived copy
number profiles from DLP+ using a Latent Tree Model
[25], yielding four distinct clades (Fig. 3a).We assigned the
cells as measured using scRNA-seq to the DLP+ clones
using clonealign and found 1568 (47%) mapping to
TOV2295R_A, 1748 (53%) to TOV2295R_B, 674 (46%)
to OV2295R_C, and 786 (54%) to OV2295R_D (Fig. 3b,
top). To ensure the clone assignments were accurate,
we tested whether predicted clone-specific expression of
genes on held out chromosome segments correlated well
with the copy number profiles of those genes (Fig. 3c and
Additional file 2: Figures S10-S12), and found these assign-
ments to be robust to the choice of input gene (Additional
file 2: Figures S13-S16). Differential expression analysis
in TOV2295R identified 947/1523 (62%) genes in CSCN
regions and 2362/5802 (40%) ICN regions as differentially
expressed (Fig. 3d and Additional file 2: Figure S18), while
in OV2295R, 307/500 (61%) and 1190/4954 (24%) were
identified in CSCN and ICN regions, respectively ( Fig. 3e
and Additional file 2: Figure S17).
We next examined the ability of clonealign to

resolve mappings as a function of phylogenetic distance
between clones. In this analysis, higher levels of uncer-
tainty in mappings between closely related clones are
expected, assuming more closely related cells harbor
more similar expression programs. Genomically defining
a clone ultimately depends on clade-level groupings of
cells that are approximately similar as a function of phy-
logenetic distance. We assembled a second set of clones
from theOV2295R-TOV2295R phylogeny by sub-dividing
each of the initial 4 clones into two (Additional file 2:
Figure S19) and re-assigning each scRNA-seq cell to one
of the 8 clones (Fig. 3b, bottom). We then computed
Euclidean distance of each clone to its nearest neigh-
bor and clone assignment probability for each cell. We
found—as expected—a strong anti-correlation between
the similarity of clones in genome space and the cer-
tainty with which cells are assigned to them (Additional
file 2: Figure S20), demonstrating the analytical challenges
of segregating cells into highly similar clones based on
gene expression data alone.We further repeated the intra-
clonal clustering analysis (as above for SA501), clustering
each clone into two distinct groups separately and com-
puting cell cycle phases. As with SA501, we found that in
three of the four clones resultant clusters corresponded
to cell cycle phase (Additional file 2: Figures S21 and
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Fig. 3 Clone-specific gene expression in high-grade serous ovarian cancer cell lines. a Single-cell phylogeny for the OV2295R and TOV2295R HGSC
cell lines inferred using a Latent Tree Model divided into four clones (TOV2295R_A, TOV2295R_B, OV2295R_C, OV2295R_D). b The scRNA-seq
clone assignments for the four clone model (top), then sub-divided into eight clones (bottom). c Expression-CNA relationship on two held out
chromosomes for TOV2295R validates the clonealign fit. d Top differentially expressed genes between clones in TOV2295R and e OV2295R

S22), implying the largest genome-independent source of
expression variation corresponds to cell cycle stage.

Discussion and conclusions
Our results establish a scalable statistical framework
for assigning cells measured using scRNA-seq to cancer
clones measured independently using shallow scDNA-
seq. We expect this approach can be used ubiquitously
in the field of single-cell biology including extensions
for other multi-modal approaches such as methylation-
transcription and chromatin accessibility-transcription.
However, there are certain situations in which

clonealign cannot be applied. While it is estimated
that 60–80% of cancers exhibit the complex structural
genomic rearrangements required to apply clonealign
[26, 27], some cancers have quiescent genomes and are
devoid of copy number changes. For example, cancers
such as karyotypically normal AML, sarcomas, and other
pediatric malignancies without genomic instability would

not generate the genomic/transcriptomic signals modeled
by clonealign [28].
Furthermore, the focus of this work has been on link-

ing transcriptional measurements to genomically defined
clones assuming only a copy-number dosage effect on
transcript abundance. While the clonealign model
allows for integration of allelic imbalance information
caused by clone-specific LOH events, the sparse expres-
sion of germline heterozygous variants detected by
the 10X chromium 3′ assay demonstrated here makes
such information uninformative (Additional file 2: Sup-
plementary text section 3). However, full-transcript-
length single-cell RNA sequencing technologies such as
Smart-seq2 [29] would allow for further refinement of
clonal assignment and represent the appropriate use-
case of clonealign’s incorporation of allelic imbalance
information.
However, the concepts introduced in the clonealign

model provide a basis for future studies of the integration
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of genomic data from independently sampled assays. At
the edge of the field, sparse in situ measurements of
transcription integrated with independent disaggregated
sampling of single-cell genomes are providing a route
to studying spatial context of co-located cell populations
[30]. Finally, there is an emergence of commercial plat-
forms whereby single-cell, kit-based assays for methyla-
tion, transcription, and genome copy number are becom-
ing widely available to the research community. In all
of these settings, clonealign and future derivatives
will provide a statistical framework to help interpret the
cellular constituents of cancer, their fitness, and their
phenotypes.

Methods
Clonealign: model formulation and inference
We begin with an N × G matrix of expression raw read
counts Y for N cells and G genes, and a G × C matrix
� = (

λgc
)
of clone specific copy numbers for C clones and

G genes. Such a copy number matrix is typically obtained
by phylogenetic analysis of single-cell CNV data, followed
by cutting of the phylogenetic tree to produce C clones
or clades. The goal of inference is to assign each of the N
cells as measured in RNA-space to one of the C clones as
measured in DNA-space.
For each cell n = 1, . . . ,N , we introduce a categorical

assignment variable zn defined such that

zn = c if cell n is assigned to clone c (1)

for c = 1, . . . ,C. Our assumption is that yng—the expres-
sion of gene g in cell n—will be dependent on the copy
number of the gene in the clone to which n is assigned, i.e.,
E ∝ μg f (λgc) where μg is the per-copy expression of gene
g and f is a dosage function that maps the copy number
of a gene to a multiplicative factor of expression. While
this function is a priori unknown and joint estimation
with clonal populations would lead to an unidentifiable
model, we can encode some basic assumptions about gene
dosage into our specification of f. We assume that if the
copy number change is small, it will lead to a propor-
tional change in expression, e.g., a copy number of 3 could
conceivably lead to 3

2× more expression. Conversely, we
assume that if the copy number change is large, e.g., if a
clone has copy number 12 in a particular region, the cells
will have a compensatory mechanism such that fewer than
12
2 × transcripts are produced, and that this is capped at an
upper limit.With these considerations inmind, we specify

f as f (λ) =
{

λ if λ < ζ

ζ if λ ≥ ζ , where in our analyseswe fix ζ = 6.

We leave as future work more sophisticated approaches
such as inferring f from joint genomic-transcriptomic
assays or marginalizing out ζ in Bayesian models.

We next specify the exact likelihood model for
clonealign. There is a subtlety in modeling RNA-seq
data as outlined in [31] in that the expression of each gene
is measured relative to all other genes in a given library
multiplied by the sequencing depth of that library. Taking
this into account is of critical importance to our problem
as if a highly expressed gene sits in a high copy number
region in a clone it will cause a decrease in expression of
all other genes. Therefore, the expected count of gene g in
cell n conditional on that cell being assigned to clone c is
given by:

E[ yng |zn = c]=

sn︸︷︷︸
Cell read
depth

Per-copy
expression

︷︸︸︷
μg × f (

Copy
number︷︸︸︷
λgc ) × e

Known
covariates︷ ︸︸ ︷
xn · βT

g +

Residual
expression
︷ ︸︸ ︷
ψn · wT

g

G∑

g′=1
μg′ f (λg′c)e

xn·βT
g′+ψn·wT

g′

︸ ︷︷ ︸
Total RNA normalization

(2)

where sn is the total read depth size of cell n.
The inner product ψn · wT

g between the row vectors
ψn of a N × Q matrix � and the row vectors wg of a
G×QmatrixW introduces structured noise to the model
and avoids forcing all expression variation to be explained
in terms of copy number variation, which is untrue in
practice. This term is analogous to representing observed
data as the product of two low-rank matrices in models
such as factor analysis and linear mixed-effects models.
By default, we set Q = 6 though if fewer than 100 genes
are used as input we set Q = 1 to avoid “over-explaining”
the expression variance with residual factors. We ensure
the model is weakly identifiable by imposing priors ψn ∼
N (0, 1) ∀n and factor-specific priors wgk ∼ N

(
0,χ−1

k

)
,

χk ∼ Gamma(2, 1).
clonealign also allows for the incorporation of

known covariates encoded in the N × P matrix X with
unknownG×P coefficients matrixB, with the inner prod-
uct xn · βT

g affecting the mean in a similar way to the ran-
dom effects as above. The covariates xn can encode known
groupings of cells such as experimental batch effects, or
additional biological information such as cell cycle stage
that can either be inferred experimentally or from the
gene expression data using methods such as scran [32].
We impose a negative binomial likelihood as is com-

monly used to model both RNA-seq [31, 33] and single-
cell RNA-seq data [34] with a mean given by Eq. (2). We
model the dispersion parameter φ as a non-parametric
function of the mean parameter using radial basis func-
tion (RBF) kernels as proposed in a recent work [35].
Specifically, we set:
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φ(μ) =
M∑

i=1
ai exp(−b(μ − ci)2) (3)

where the location ci and with b of each basis function
is a fixed hyperparameter and the amplitude of each ai is
jointly inferred from the data. We fix M = 20 by default
and evenly space ci from the minimum to maximum raw
count values and set b = 1/

(
2δ2

)
where δ is the distance

between consecutive bases.
The model as defined in 2 is invariant to rescalings of all

μ, so we fix μ1 = 1 and the interpretation of the remain-
ing μ2, . . . ,μG is the per-copy expression relative to gene
1 with a prior logμg ∼ N (0, 1). The total read depth
sn can either be jointly inferred with the model or fixed
beforehand.
Inference is performed using mean field variational

Bayes (see, e.g., [36]). Briefly, given the joint distribution
p(x, θ) of the data x and model parameters θ , we seek
to find a variational distribution q(θ |ζ ) where ζ are the
variational parameters that approximates the posterior
p(θ |x) by minimizing KL

[
q(θ |ζ )||p(θ |x)], the Kullbach-

Leibler divergence between the variational and posterior
distributions, which is equivalent to minimizing the evi-
dence lower bound (ELBO). The non-conjugate nature
of the model in Eq. 2 requires us to compute a Monte
Carlo estimate of the KL divergence that we can opti-
mize by computing low-variance gradients using the
reparametrization trick [37].
Specifically, we posit an approximating distribution of

the form q(z,μ) = ∏
n q(zn)

∏
g q(μg) for the clone

assignment and mean expression variables respectively
and optimize all other model parameters as variational
parameters in a similar manner to [37]. The approximat-
ing distribution for the clone assignments is categorical
of the form q(zn = c) = ϕnc. The approximating dis-
tribution for the mean expression parameters is given by
a continuously differentiable invertible transform of stan-
dard Gaussian noise ε ∼ N (0, 1) by μg = exp(νg + ρgε).
While the expectation over q(z) can be taken analytically,
to calculate the expectation with respect to q(μ), we must
compute a Monte Carlo estimate by drawing S samples
μ(s) ∼ q(μ), where we set S = 1 following previous
literature [37].
Optimization is performed using the Adam opti-

mizer [38] as implemented in Tensorflow. Conver-
gence is assessed by monitoring the ELBO with the
model converged when the change between consecu-
tive iterations drops below 10−6%. clonealign is open
source and available online at http://www.github.com/
kieranrcampbell/clonealign.

Incorporating alleleic imbalance information
We can leverage allelic imbalance information in scRNA-
seq data to further refine clonotype assignment. For
expressed heterozygous germline SNPs in regions of

clone-specific copy number, if there is a clone-specific
LOH event, then the allelic ratios will be biased towards 0
(loss of alt) or 1 (loss of ref ) compared to diploid regions
where the allelic ratio should be centered around 1

2 . Note
that we assume (i) the scDNA-seq is too shallow to phase
variants, and (ii) there is no copy-neutral LOH. If the
user believes assumption (ii) is violated by inspecting the
scDNA-seq reads, then clonealign should be run using
gene expression data alone.
We define the augmented statistical model as follows:

let anv and rnv be the alt and ref counts for (germline
heterozygous) variant v in cell c for n = 1, . . . ,N and
v = 1, . . . ,V . Further, let λvc be the copy number at vari-
ant v in clone c inferred from the scDNA-seq data. Then
the likelihood conditioned on the clone is given by:

p(anv, rnv) =
{
DLOH(anv, rnv) ifλvc = 1
DHET(anv, rnv) ifλvc = 2 (4)

where

DHET(anv, rnv) = BetaBinomial(anv, anv + rnv|α = 2,β = 2)

DLOH(anv, rnv) = 1
2
BetaBinomial(anv, anv + rnv|α = 0.1,β = 1.9)

+ 1
2
BetaBinomial(anv, anv + rnv|α = 1.9,β = 0.1)

(5)

The use of the beta binomial model is motivated by
the observation that the read counts will follow a bino-
mial distribution but the exact number of successes (alt
read fraction) is not known exactly due to sequencing
errors and RNA editing, so we marginalize over this to get
the given the observation model. The distribution DHET
places mass around an alternate allele fraction of 1

2 while
DLOH places its mass at 0 and 1. The variance calibra-
tion leading to the exact choice of parameters is taken
from a recent study of clone-specific allele expression in
scRNAseq [39]. The likelihood induced by Eq. 5 is then
multiplied iid and added to the log joint probability of the
data and parameters for variational inference, when SNV
data is available. A dockerized workflow to produce the
required variant by clone and variant by cell matrices from
the output of the 10X CellRanger software and HMM-
Copy [15] respectively is available at http://www.github.
com/kieranrcampbell/snvworkflow.

Simulations
To ensure all simulations were as realistic as possible, the
clonealignmodel was fitted to the SA501 dataset giving an
empirical distribution of the model parameters and data
p(�,μ,�)p(s). We then simulated from the clonealign
model, sampling from the empirical distribution of model
parameters. For clonealign, we considered five different
simulation scenarios, where each scenario represents the
marginal effect as the full combination of effects would be

http://www.github.com/kieranrcampbell/clonealign
http://www.github.com/kieranrcampbell/clonealign
http://www.github.com/kieranrcampbell/snvworkflow
http://www.github.com/kieranrcampbell/snvworkflow
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computationally infeasible. All simulations reported the
area under the receiver operator curve (AUC) as a mea-
sure of accuracy, except for varying the number of clones
where we use the accuracy as the metric (proportion of
clones called as correct).

Varying proportion of genes with dosage effect
For each simulation, a certain proportion π =
0.1, 0.2, 0.3, . . . , 0.9 of genes were simulated with a CN-
expression dependency, while the expression of the
remaining 1 − π proportion had an expression indepen-
dent of copy number, achieved by setting the copy number
to 2 for all clones during simulation of the expression,
but providing the true copy number during inference as
clonealign does not know a priori which genes exhibit a
CN expression dependency. Datasets were simulated for
two clones corresponding to the A and B clones from
SA501 .

Varying how genomically distinct clones are The num-
ber of genes distinguishing clones in clone-specific copy
number regions was varied from 2, 5, 10, 50, 100, 500, and
1000 for 1000 cells and 2 clones.

Varying the number of clones The number of clones
simulated was set to 2, 4, 8, 16, 32, and 64 for 200 and 800
genes and 1000 cells.

Varying the minor clone frequency The minor clone
frequency was varied among 1%, 5%, 10%, 20%, and 50%
for 200 and 800 genes and 1000 cells.

Varying the quality of the scRNA-seq data We subsam-
pled the simulated 10X data from the original dataset size
of 0.86 reads per gene per cell down to 1%, 5%, 10%, and
50% for 200 and 800 genes and 1000 cells.

Bioinformatics analysis
For all scRNA-seq data expression, estimates were
obtained from raw read counts using CellRanger (version
2.0.1 for SA501X2B and version 2.1.0 for (T)OV2295R)
aligned to hg19. Quality control of SA501X2B cells
removed those with fewer than 1000 counts or 350
expressed genes in regions of distinct copy number
between clones A, B, and C. Clone-specific copy num-
ber calls were created according to [1]. X-chromosome
genes were removed prior to clonealign analysis as the
expression-copy number assumption will be violated if
the deleted/amplified X copy is inactive. For OV2295R
and TOV2295R, cells were retained with total UMIs
greater than 20,000, and total number of genes detected
between 3000 and 7500. Copy number calls for scDNA-
seq were performed using HMMCopy version 1.22.0
and a phylogeny constructed using a latent tree model.

The clone-specific copy number was constructed as the
median copy number of all cells in a clone at a given
position. Genes on the X-chromosome were removed as
before.
Differential expression (DE) analysis was performed

using Limma Voom [16] version 3.36.0. For SA501X2B,
genes with greater than 100 total counts were retained
for DE. For both OV2295R and TOV2295R, genes with
greater than 500 total counts were retained for DE as up to
this threshold the mean-dispersion relationship reported
by Limma Voom was visually a poor fit. All p values
were corrected for multiple hypothesis testing using the
Benjamini-Hochberg procedure.
For the SA501 LOH analysis, bulk whole-genome DNA

sequencing as previously described in [14] was aligned to
hg19 using BWA aln version 0.7.10 after which germline
LOH alleles were identified using samtools 1.7 mpileup
followed by VarScan 2.3.9 [40] mpileup2snp com-
mand (default settings). Single-cell RNA and DNA-seq
profiles were merged into pseudobulk clones using sam-
tools version 1.7 and reads mapping to ref and alt alleles
at positions identified as germline heterozygous called
using Varscan mpileup2cns command with default
settings other than setting -min-avg-qual 5 on the
merged scRNA-seq to increase the number of callable
positions. Regions in the pseudobulk pileups were called
LOH using Titan version 1.16.0 [41]. We compared the
major allele frequency in the region of chromosome 18
from position 5.5 × 107 onwards, finding a significantly
reduced major allele frequency in clone A in both DNA(
p = 3.7 × 10−51) and in RNA

(
p = 5.9 × 10−4), both

using one-sided Wilcoxon rank-sum test.
The results of the simulations in Fig. 1d suggest that the

higher the latent proportion of genes that exhibit CN-gene
dependency, the more accurate our inference. While the
set of genes that exhibit such dependency is unknown a
priori and most likely cancer and even patient specific, it
is possible to select a set of genes that are more likely to
exhibit such interactions based on previous studies. For
example, we took the copy number and expression data
from both the BRCA and OV cohorts from The Cancer
Genome Atlas (TCGA, [42]) and regressed log-expression
on logR (relative copy number). We found the vast major-
ity of genes exhibited a positive correlation with logR
(Additional file 2: Figures S21 and S22). It is possible to
use only these genes in analyses such as clonealign.
To test the robustness of clonealign to input gene selec-

tion for the SA501, TOV2295R, and OV2295R datasets,
we re-fitted clonealign excluding the bottom p% of least
variable genes (as defined in log-expression space), for
p ∈ {10, 20, 40, 60, 80, 90}, and compared the concordance
in clone assignments between fits. The results can be seen
as alluvial plots in Additional file 2: Figures S4, S12 and
S13, demonstrating that clonealign is highly robust to the
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input gene selection and that in general up to 60% of
the least variable genes may be removed before the clone
assignments begin to significantly change.
We further assessed the stability of clonealign clone

assignments to random removal of genes for the SA501,
OV2295, and TOV2295 datasets. For each, we removed a
proportion (0.3, 0.5, 0.7, 0.9) of genes at random across
10 replicates and computed the precision and recall as if
the fits using all genes represented the true clonal assign-
ments. While the results exhibit decreasing agreement
with increasing number of genes removed and variability
across datasets, in general, up to 30% of genes could be
removed to maintain average precision and recall > 0.8
for all clones (Additional file 2: Figures S4, S15, S16).
To rank genes by proportion of variance explained

by clonality in SA501, the full dataset was subsetted
to remove any ribosomal genes and those on the X
chromosome (due to entire chromosome loss).We further
only considered genes whose variance in log-expression
was greater than the mean variance over all genes to
avoid spurious associations (i.e., if a gene is expressed
only in a single-cell, its entire expression variation is triv-
ially explained by clonality). The proportion of expression
variation was calculated using the aov function in R.
Gene Set Enrichment Analysis was then performed using
the fgsea package [43] using all ReactomeDB pathways
with genes ranked according to proportion of expression
variance explained by clonality.

Cell lines and tissue preparation
OV2295 and TOV2295 cells were cultured in Dul-
becco’s modified Eagle’s medium supplemented with 10%
FBS. Patient-derived xenografts were generated under
the tumor tissue repository (TTR-H06-00289) protocol,
which fulfills the requirements of UBC BCCA Research
Ethics Board. All animal studies were approved by the
Animal Care Committee at the University of British
Columbia. Xenografts were transplanted subcutaneously
into female NOD/SCID interleukin-2 receptor gamma
null (NSG) and NOD Rag-1 null interleuki–2 receptor
gamma null (NRG) mice as previously described (Eirew et
al., 2015). Harvested tumors were viably frozen in DMEM
containing 45% FBS and 6% DMSO.

Single-cell RNA sequencing Thawed samples were
digested for 2 h with collagenase/hyaluronidase, and sin-
gle cells were FACS sorted for viability by propidium
iodide negativity. Single-cell suspensions were loaded
onto the 10X genomics single-cell controller and libraries
prepped according to the Chromium Single Cell 3”’
Reagent v2 Chemistry kit standard protocol. Libraries
were then sequenced on an Illumina Nextseq500/550 with
42 bp paired end reads. Cell Ranger 2.0 was used to
perform demultiplexing, alignment, and counting.

Single-cell DNA sequencing Single-cell suspensions
were stained with LIVE/DEAD Fixable Red Dead Cell
Stains (ThermoFisher) and using a cellenONE (Cellenion),
single cells dispensed into each well on a nanowell
chip containing two unique dual indices [11]. Libraries
were generated using a one-pot transposase chemistry
(Nextera DNA Library Preparation Kit, Illumina) as pre-
viously described [1, 11]. Briefly, spotted cells were lysed
overnight, followed by tagmentation, neutralization, and a
sample index PCR.

Additional files

Additional file 1: Supplementary text. (PDF 108 kb)

Additional file 2: Supplementary figures. (PDF 6381 kb)
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