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SUMMARY
Increasing evidence of functional and transcriptional heterogeneity in phenotypically similar cells examined individually has prompted

interest in obtaining parallel methylome data. We describe the development and application of such a protocol to index-sorted

murine and human hematopoietic cells that are highly enriched in their content of functionally defined stem cells. Utilizing an opti-

mized single-cell bisulfite sequencing protocol, we obtained quantitative DNA methylation measurements of up to 5.7 million CpGs

in single hematopoietic cells. In parallel, we developed an analytical strategy (PDclust) to define single-cell DNA methylation states

through pairwise comparisons of single-CpG methylation measurements. PDclust revealed that a single-cell epigenetic state can be

described by a small (<1%) stochastically sampled fraction of CpGs and that these states are reflective of cell identity and state. Using

relationships revealed by PDclust, we derive near completemethylomes for epigenetically distinct subpopulations of hematopoietic cells

enriched for functional stem cell content.
INTRODUCTION

Hematopoietic stem cells (HSCs) are functionally defined

cells that display evidence of extensive self-renewal of their

ability to generate mature blood cells for the lifetime of the

organism and following transplantation into myelosup-

pressed permissive hosts (Doulatov et al., 2012; Eaves,

2015). Clonal analyses of serially transplantable mouse

HSCs have revealed that cells thus defined are composed

of multiple distinct subpopulations that stably propagate

specifically restricted abilities to produce different types

of mature blood cell types (Benz et al., 2012; Dykstra

et al., 2007; Kent et al., 2009; Sanjuan-Pla et al., 2013;

Yamamoto et al., 2013).

Epigenetic modifications have been shown to be critical

for the control of normal hematopoiesis as exemplified by

the consequences of alterations incurred by disruption of

de novo DNA methylation in primitive hematopoietic cells

(Challen et al., 2012; Quivoron et al., 2011; Shlush et al.,

2017). Moreover, in long-term HSC populations, lineage-

specific enhancers appear to be epigenetically marked

(Lara-Astiaso et al., 2014), and regulatory regions show

gain or loss of DNA methylation during the differentiation

of their progeny (Bock et al., 2012; Cabezas-Wallscheid

et al., 2014). However,most of the epigeneticmeasurements

underpinning these observations represent consensus
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partially enriched in HSCs or their progeny, thus failing to

discern distinct epigenetic states within HSCs. Indeed, het-

erogeneity inmethylation states of singleCpGs is a common

feature of cells assessed as bulk populations (Angermueller

et al., 2016; Farlik et al., 2016; Hou et al., 2016; Hu et al.,

2016; Qu et al., 2016). In addition, epigenetic heterogeneity

has been observed across individual HSCs and clonally

amplifiedHSCpopulationswithpreserved lineagepotential-

ities (Farlik et al., 2016; Yu et al., 2016). Nevertheless, the

degree to which heterogeneity in the methylome of HSCs

is related to their defining properties remains poorly

understood.

Assessment of the methylome of single cells is limited by

measurement insensitivity and stochastic missing data.

Current analytical strategies for single-cell DNA methyl-

ation measurements average DNA methylation in fixed

genomic bins (Angermueller et al., 2016; Hou et al., 2016;

Luo et al., 2017; Smallwood et al., 2014), or over defined

genomic regions (Farlik et al., 2015, 2016; Hu et al.,

2016). However, in many instances multiple regulatory re-

gions are present within these genomic intervals and the

relationship of their activity to average DNA methylation

within an interval unknown. This is further complicated

by the observations that the methylation state of a single

CpG can affect transcription (Banet et al., 2000; Fürst
uthors.
ecommons.org/licenses/by-nc-nd/4.0/).
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et al., 2012; Hashimoto et al., 2013; Jinno et al., 1995;

Mamrut et al., 2013; Nile et al., 2008; Tsuboi et al., 2017;

Zhou et al., 2017) by altering transcription factor binding

affinity (Rishi et al., 2010; Yin et al., 2017). Imputation stra-

tegies leverage sequence context along with CpG methyl-

ation states across single cells to increase the resolution of

genomic intervals (Angermueller et al., 2017). However,

inference across cells (as well as sequence context) assumes

homogeneity across cells, which is at cross-purposes with

the generation of single-cell molecular measurements

through the potential to mask rare subpopulations.

To address these limitations, we developed an automated

plate-based high-resolution single-cell methylation proto-

col that we call Post-Bisulfite Adapter Ligation (PBAL),

and analyzed the resulting sequence reads with an analyt-

ical pipeline (Pairwise Dissimilarity Clustering: PDclust)

that leverages the methylation state of individual CpGs.

We applied this single-cell methylation framework to pro-

file primitive hematopoietic cells of mouse and human

origin to identify epigenetically distinct subpopulations.

Deep sampling of the CpG content of individual HSCs al-

lowed for the near complete reconstitution of regulatory

states from epigenetically defined subpopulations of

HSCs and revealed a high level of redundancy of CpG

methylation states within these phenotypically defined

hematopoietic cell types.
RESULTS

Post-Bisulfite Adapter Ligation

PBAL is an adaption of the post-bisulfite adapter tagging

(PBAT) strategy (Miura et al., 2012) optimized for library di-

versity. Previous single-cell PBAT-like strategies have used

random primers extended with Illumina sequences to

enable direct amplification (Angermueller et al., 2016;

Smallwood et al., 2014). When comparing this approach

with untagged random priming, we observed that

extended randomers generated shorter double-stranded

DNA fragments compared with randomers alone, suggest-

ing inefficient priming (Figure S1). To circumvent this we

used untagged random primers and ligated Illumina

sequencing adapters to the resulting double-stranded

DNA fragments. Pooling of single-cell PBAL libraries

allowed the number of PCR cycles to be reduced and hence

increased library diversity without compromising the

minimum yield requirements for Illumina sequencing

(see Experimental Procedures).

We applied this protocol to EPCR+CD45+CD48�CD150+

(ESLAM) cells isolated by fluorescence-activated cell sorting

from adult mouse bone marrow (see Experimental Proced-

ures). This extremely rare, phenotypically defined popula-

tion is of interest because it is the most highly purified
(�40%pure) source of functionally definedmouse hemato-

poietic cells with durable (>4–6 months) repopulating ac-

tivity in transplanted hosts (Benz et al., 2012; Kent et al.,

2009). As a comparator population, we sorted a related

but less HSC-enriched lineage-negative Lin�SCA1+c-KIT+

(LSK) phenotype (�3% HSCs) (Osawa et al., 1996)

(Figure 1A). We also applied our PBAL protocol to the

analogously human HSC-enriched Lin�CD34+CD38�

CD90+CD45RA�CD49f+ population (hereafter referred to

as ‘‘CD49f cells’’) isolated from two different cord blood do-

nors and reported elsewhere (Knapp et al., 2017, 2018).

Approximately 10%of theseCD49f cells have long-term re-

populating activity in transplanted immunodeficientmice,

and contain all of those able to generate progeny with

similar activity assessed in secondary hosts (Knapp et al.,

2017, 2018; Notta et al., 2011).

Upon isolation, these mouse and human HSC-enriched

cells were immediately lysed and fully unmethylated

lambda and fully methylated T7 phage controls added, fol-

lowed by bisulfite conversion and on-bead desulfonation

(Domanico et al., 2013). The resulting single-stranded

DNA was used as a template for random priming to

generate double-strandedDNA formultiplexed library con-

struction on an Agilent Bravo liquid handling platform

(Figure 1B). Following library construction and low-cycle

PCR amplification, failed wells were identified by qPCR

targeted to repetitive sequences in the mouse or human

sequences and removed (see Experimental Procedures)

(Figures S2D and S2E). Libraries that passed this quality

control (QC) threshold were pooled and sequenced

together on an Illumina HiSeq platform.

An average of 38% of the resulting reads from all single

cells sequenced aligned to the reference genome, compared

with an average of 0.32% for no template controls (Fig-

ure S2A). Conversion of unmethylated cytosines was

>99% efficient, while overconversion of methylated cyto-

sines was <2% (Table S1). An average of 4 million sequence

reads were generated per cell, enabling themeasurement of

the methylation states of 1.2 million CpGs per cell (Fig-

ure S2B). In silico merging of the resulting sequence reads

confirmed that CpG recovery per cell is stochastic (Fig-

ure S2C). As an additional QC step, copy-number variation

(CNV) in 5-Mb windows was assessed with Control-FREEC

(Boeva et al., 2012) to identify and remove cells with un-

even coverage thatmay represent biological or technical ar-

tifacts (Figures S2F and S2G). After removal of cells that

failed any QC step (Supplemental Experimental Proced-

ures), data for 64 LSK cells, 84 ESLAM cells, and 121

CD49f cells were available for analysis.

Methylation Adjacency in Individually Analyzed Cells

CpG methylation states derived from bulk cells are charac-

terized by spatial correlation (Eckhardt et al., 2006; Zhang
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Figure 1. Overview of Experimental Methods
(A) Schematic of the phenotypes studied.
(B) Schematic of the PBAL method. Cells are lysed in 96-well plates to release genomic DNA (gDNA) and then subjected to bisulfite
conversion that simultaneously converts and shears the gDNA into fragments. Random hexamers are then used to regenerate double-
stranded DNA that is then end-repaired, a-tailed, and ligated with indexed adapters before low-cycle PCR amplification. Libraries are then
pooled and sequenced on an Illumina sequencing platform.
See also Figures S1 and S2.
et al., 2015) and improvements in differentially methylated

region (DMR) detection have been achieved through the

development of algorithms that leverage spatial relation-

ships (Hansen et al., 2012). Spatial correlation of CpG

methylation state derived from bulk measurements has

also provided a rationale for assigning themethylation state

of single-CpG measurements to all CpGs within a genomic

interval in single-cell methylation analyses (Farlik et al.,

2015, 2016; Hou et al., 2016; Hu et al., 2016; Luo et al.,

2017; Smallwood et al., 2014).However, the degree towhich

CpG methylation state is spatially correlated in individual

cells has not been studied. To address this question, we

calculated the probability that a CpG in single LSK cells

was in the same methylation state with neighboring CpGs

as a function of their genomic distance (Figure 2A) and, as

a comparator, we generated adjacency measurements from

PBAL datasets derived from10,000 LSK cells using the calcu-
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latedmeanmethylation difference between nearbyCpGs to

account for the continuous nature of bulk data.

This strategy revealed genome-wide concordance be-

tween CpGs up to 1 kb in cis in both the single cells and

the bulk population, which then decreased to random

chance at 2 kb (Figure 2B). Genome-wide CpG cis concor-

dance was consistently higher in bulk compared with sin-

gle-cell measurements and did not approach random

chance at 5 kb, whereas single-cell concordance reached

background levels at 4 kb (Figure 2B). Concordance be-

tween cis CpGs for single-cell and bulk-cell measurements

was largely equivalent within CpG islands and promoters

but was higher in bulk compared with single cells in all

other genomic contexts (Figure 2C). In addition, we found

that concordance for both single-cell and bulk samples de-

cayed more rapidly within enhancers (Lara-Astiaso et al.,

2014) compared with other genomic regions (Figure 2C).



Figure 2. Concordance Analysis of Neighboring Methylated CpGs by Their Genomic Separation
(A) A schematic for how adjacency is calculated. For a randomly subsampled number of CpGs (CpG1), the concordance of methylation of
100 CpGs before and after CpG1 was recorded along with their separation.
(B) Analysis of bulk versus single LSK cells across CpG sites genome wide. Curves represent the weighted average in 100-bp bins. Horizontal
lines indicate the probability that two randomly sampled CpG sites have the same methylation state based on their genome-wide
methylation (‘‘baseline concordance’’). Baseline concordance was calculated as the probability of sampling two methylated or two un-
methylated CpGs, which is equal to the square of the average fractional methylation rate plus 1 minus the square of the average fractional
methylation rate.
(C) Analysis of bulk versus single cells across selected regions. For each panel, we considered only CpGs as CpG1 if they were found within
each genomic feature.
Taken together, these findings suggest that analytical

strategies that infer cytosine methylation within large

bins (up to 100 kb, Luo et al., 2017) across the whole

genome of single cells may lead to oversmoothening of

CpG methylation, supporting a need for additional

methodologies.

Identification of Epigenetic Subsets within HSC

Populations at Single-CpG Resolution

Having established that spatial correlation of CpGmethyl-

ation states decay rapidly toward random chance within

2 kb and are context specific within single cells, we sought
to ask whether we could leverage the information content

of single CpGs in single-cell methylation datasets.We (Gas-

card et al., 2015) and others (Bock et al., 2012; Hansen et al.,

2012; Kundaje et al., 2015) have developed single-CpG res-

olution approaches for DMR detection from bulk DNA

methylation measurements; however, these fail to address

the sparse and stochastic methylation measurements char-

acteristic of single-cell methylomes. To address this, we

developed a measure of CpG methylation pairwise dissim-

ilarity (PD) defined as the average of the absolute difference

in methylation values at CpGs covered in each pairwise

comparison (Figure 3A). We then calculated Euclidean
Stem Cell Reports j Vol. 11 j 578–592 j August 14, 2018 581



Figure 3. Pairwise Analysis of Single Cells Reveals Subsets within the Murine ESLAM Phenotype
(A) Schematic showing how the PD values are calculated between all paired comparisons of single cells.
(B) ESLAM cells have a lower overall PD compared with LSK cells and all cell types analyzed. Every pairwise comparison between cells
denoted on the x axis is summarized as a box plot with the distribution of PD values shown on the y axis. p values were calculated using a
two-sided t test.
(C) PDclust of CpGs associated with genes implicated in HSC function (Cabezas-Wallscheid et al., 2014) separate ESLAM and LSK cells, with
some LSK cells exhibiting an ESLAM epigenetic signature. The rows and columns are symmetrical and represent single cells. The cells are
shaded to represent the PD between each pair of cells, with red representing highly dissimilar and yellow representing highly similar. Meth,
average genome-wide CpG methylation; cpg_count, number of distinct CpG sites recovered.
(D) Same as (C) but instead considering all CpGs regardless of their genomic position.
(E) Multidimensional scaling using PD calculated from (C) used directly as input.
(F) MDS analysis of (D) reveals group 1 at the epicenter of single ESLAM cells with group 2 surrounding the central cluster.
See also Figures S3–S5.
distances between each pair of cells using their PD values as

features and performed hierarchical clustering (PDclust; see

Experimental Procedures).

Application of this algorithm to the ELSAM and LSK sin-

gle-cell datasets showed that ESLAM cells are epigenetically

more similar to each other compared with LSK cells (p <

0.01), consistent with the knowledge that they are func-

tionally less heterogeneous (Figure 3B). Unsupervised

clustering on PDs derived from CpG sites within genomic

regions previously implicated in the HSC-to-multipotent

progenitor (MPP) transition (Cabezas-Wallscheid et al.,
582 Stem Cell Reports j Vol. 11 j 578–592 j August 14, 2018
2014) generated two distinct subsets that were differen-

tially enriched in single ESLAM and LSK cells (Figure 3C).

Projection of PDs onto two-dimensional space with multi-

dimensional scaling supported the existence of two epige-

netic states defined by distinct DNA methylation signa-

tures (Figure 3E)—one that was most enriched in the

ESLAM population and the other in the LSK cells—with a

proportion (13/64) of LSK cells showing an ESLAM-like

epigenetic state.

Next, we enumerated PD values from CpGs genome

wide to detect epigenetic subsets within the ESLAM and



Figure 4. Pairwise Dissimilarity Applied to Existing Datasets Is Able to Distinguish Cells
Based on Cell Type and Treatment. (A and B) Clustering (A) and MDS scaling of PD values (B) calculated from HL60 and K562 cells (Farlik
et al., 2015) separates cells by cell type, and reveals patterns of treatment-induced differentiation. Cells are shaded to represent the
pairwise dissimilarity between each pair of cells, with red representing highly dissimilar and yellow representing highly similar. Meth,
average genome-wide CpG methylation; cpg_count, number of distinct CpG sites recovered.
(C and D) Clustering (C) and MDS scaling (D) of embryonic stem cells (Smallwood et al., 2014; Angermueller et al., 2016) separates cells by
the culture medium in which they were grown, and shows some cells in a transition state.
LSK populations. When all available CpG sites were used,

PDclust revealed a subgroup of cells with the highest rela-

tive homogeneity (group 1) compared with all other cells

(group 2) (Figure 3D). Multidimensional scaling (MDS)

analysis confirmed these relationships by revealing a high-

ly similar population (group 1) and a dispersed population

(group 2) (Figure 3F). Group 1 included a higher propor-

tion of ESLAM cells than LSK cells (26/84 versus 3/64 or

31% versus 5%). Interestingly, these proportions closely

resemble the published biologically defined HSC content

of both of these phenotypically defined populations.

MDS plots further revealed a gradual and continuously
increasing heterogeneity in the CpG profiles of LSK cells

(Figure 3F). As a negative control, we considered only

CpGs within a genomic region set that would not be ex-

pected to be relevant in HSCs (cortex enhancers; Hon

et al., 2013) and showed no discernible relationships (Fig-

ure S3). As an additional validation, we applied PDclust to

previously generated methylome data for single human

leukemic cells (Farlik et al., 2015) and single murine em-

bryonic stem cells (Angermueller et al., 2016; Smallwood

et al., 2014) and separated cells accurately by type and

treatment, with an exception for HL60 cells treated with

vitamin D (Figure 4). Taken together, these results suggest
Stem Cell Reports j Vol. 11 j 578–592 j August 14, 2018 583



that the epigenetic state of a single cell can be accurately

described by a small (<1%) stochastically sampled fraction

of CpGs and that these states are reflective of cell identity

and state.

Function of DMRs in Epigenetically Defined

Subgroups of Mouse HSCs

To examine the functional significance of the epigeneti-

cally defined subsets of LSKs and ESLAM cells, we merged

CpG calls in silico across all cells belonging to group 1

and separately to group 2 described above. We then in-

ferred methylation values of all CpGs across the genome

for these two groups using Bsmooth (Hansen et al., 2012)

and identified DMRs between the two groups (Figure S4A

and Experimental Procedures). This resulted in the identifi-

cation of 9,922 DMRs that were hypomethylated in group

1 compared with group 2, and 10,047 DMRs that were the

opposite state. For eachDMR, we then usedHOMER (Heinz

et al., 2010) to annotate its overlapping genomic feature(s)

as well as the nearest gene.

In general, CpG methylation is anti-correlated with

expression when found in the promoter region or the first

exon of a gene (Brenet et al., 2011), and active distal regu-

latory regions are typically hypomethylated (Stadler et al.,

2011). We found that DMRs between groups 1 and 2 were

enriched in promoters (±2 kb of transcription start site

[TSS]), depleted in distal intergenic regions, and enriched

in evolutionarily conserved genomic elements (Phastcon

score [Siepel et al., 2005]; two-sided t test, p � 0) (Fig-

ure S4B). We next looked for subsets of DMRs that were

either within the first exon, within the promoter, or inter-

genic and within 20 kb from an annotated TSS (Kundaje

et al., 2015). We assigned each DMR of this class to the sub-

group that reported the lower methylation value and asso-

ciated each DMR group with the nearest genes using

HOMER (Heinz et al., 2010). As a control, we performed

the same analysis for data merged in silico from all LSK

and ESLAM single cells. To identify genes uniquely associ-

ated with only group 1 or group 2, we removed those asso-

ciatedwithDMRs fromboth populations and subjected the

remaining group 1- or group 2-specific genes to gene set

enrichment analysis (GSEA). Genes associated with hypo-

methylated DMRs in group 1 were significantly enriched

(false discovery rate [FDR] adjusted q value < 0.1) in HSC

proliferation terms as well as genes preferentially expressed

in long-term HSCs and erythrocytes (Figure S4C). In

contrast, genes associated with hypomethylated group 2

DMRs were enriched in genes specifically expressed in

differentiated hematopoietic cells and genes that, when

knocked out, lead to increased HSC numbers. Together

these results suggest that DMRs specifically hypomethy-

lated in group 1 compared with group 2 are associated

with genes implicated in HSC function.
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After identifying genes associated with hypomethylated

DMRs, we sought to examine their expression in single

ESLAM cells. To do this, we used previously generated

single-cell RNA-sequencing data from Lin�c-KIT+SCA1+

CD34�FLT3�CD48�CD150+ HSCs (Wilson et al., 2015)

and compared the expression of the DMR-associated genes

thus identified with all genes. This showed that the DMR-

associated genes were expressed at higher levels in these

cells as compared with all other genes (p < 0.01, Mann-

Whitney test) (Figure S5A). Further investigation of the

levels of expression of these DMR-associated genes within

the ESLAM population (Wilson et al., 2015) showed that

a significant number showed heterogeneous expression

profiles as might be expected if they were composed of

one or more subpopulations (hypergeometric p value <

0.01) (Figure S5B). To identify potential surface markers

that might allow their physical separation, we identified

genes encoding plasma membrane proteins (as defined by

gene ontology) and associated these with DMRs that were

hypomethylated in group 1. The resulting list included

Cd82 (Figure S4A), a gene encoding a surface protein previ-

ously implicated in the maintenance of long-term HSCs

in vivo (Hur et al., 2016).

Human HSCs and Their Derivatives Can Also Be

Defined at Single-CpG Resolution

To determine whether single human hematopoietic cells

could also be described using PDclust, we generated PBAL

datasets for series of single human CD49f cells and ob-

tained previously published datasets for all the major

CD34+ phenotypes in human cord blood (Farlik et al.,

2016). Application of PDclust to the latter datasets showed

that a majority of megakaryocytes and selected CD49f cells

and other CD34+ phenotypes had higher PD values and ap-

peared to be outliers from the remaining cells (groups 2 and

3) (Figures S6A–S6C). These outlier cells also demonstrated

significantly lower genome-wide average CpGmethylation

in comparison with all other cells, suggesting that they

were either technical or biological outliers (Figure S6D).

When they were removed, the single-cell methylome

data clustered according to cell phenotype, with some over-

lap of the CD49f cells and MPPs (Figure 5A). Multidimen-

sional analysis confirmed separation of CD49f cells and

MPPs from other phenotypes and revealed a clear separa-

tion of progenitors of granulocytes and macrophages

(GMPs) from all other phenotypes (Figure 5B). This analysis

also showed that cells within the same phenotype had a

lower dissimilarity as compared with other phenotypes

(p < 0.01 for all comparisons) (Figure 5C). These results

confirm that stochastic measurements of single-CpG

states in single cells can accurately segregatemultiple prim-

itive phenotypically distinct human hematopoietic cell

populations.



Figure 5. Pairwise Dissimilarities of Human Hematopoietic Cells with Different Phenotypes
(A) PD of CD49f and other CD34+ subsets separate cells by phenotype with some overlaps. The rows and columns are symmetrical and
represent single cells. Cells are shaded to represent the PD between each pair of cells, with red representing highly dissimilar and yellow
representing highly similar.
(B) MDS of PD values shows that CD49f cells cluster in the middle, with GMPs, CLPs, and MLPs branching out in separate directions.
(C) Single cells have lower PD values compared with cells of the same type versus cells of a different phenotype. The distribution of PD
values when a cell is compared with either a cell of the same or different phenotype is plotted as a box plot.
See also Figure S6.
Sources of Epigenetic Heterogeneity within the

Human CD49f Compartment

The CD49f cells were sorted from cord blood derived from

two individual donors, which enabled an examination of

donor-specific contributions to methylation states at the

single-cell level. Interestingly, this analysis revealed that

that the data for single CD49f cells clustered separately

by donor (Figure 5A). To investigate whether these donor-

specific epigenetic differences were a result of genetic dif-

ferences between the two donors, we identified genetic var-

iants by applying MethylExtract (Barturen et al., 2014) to

the donor in silico merged datasets. After combining non-

identical homozygous variants for both donors (excluding

homozygous variants involving a C or G), wemasked CpGs

within 200 bp of the donor-specific variants and recalcu-

lated the PD values. This decreased both inter- and intra-

donor PD values, but donor-specific methylation states re-

mained the major driver of variation within the CD49f

population (Figures 6A and 6B). We also noted that the

PD value increased when only CpGs within 200 bp of
single-nucleotide variants (SNVs) were considered (Fig-

ure 6C). Taken together, this result suggests that genetic

variation accounts only partly for the observed donor-asso-

ciated epigenetic variation and that donor-specific epige-

netic variation is a dominant feature across single and

highly purified human CD49f cells.

Application of PDclust separately to the methylome

data for the single CD49f cells from donors 1 and 2 then

enabled the identification in each of a consistent subpop-

ulation (group 1, comprising 9% and 11%, respectively,

Figure 7A) that did not correlate with expression levels

of the surface markers used to isolate them (CD3, 11b,

19, 34, 38, 90, 45RA, 49f) (Figure 7B). To test the sensitivity

to the depth of sequence data obtained, we then

sequenced the library from donor 1 to a 4-fold greater

depth (an average of 7.8 million mapped reads per cell)

(Figures S7A and S7B). Interestingly, this did not signifi-

cantly alter the results (Figure S7C), suggesting that the

cell-to-cell variation was already accurately captured by

the original dataset.
Stem Cell Reports j Vol. 11 j 578–592 j August 14, 2018 585



Figure 6. Donor Variation in CD49f Cell Methylomes
(A) Single CD49f cells still cluster by donor after removing CpGs within 200 bp of non-C and -G SNV locations.
(B) MDS projection of PD values onto 2D space remains largely unchanged despite taking into account SNVs.
(C) PD values as a function of comparisons versus cells either from the same or the other donor. Boxes are colored if only CpGs near SNVs,
outside SNVs, or all CpGs were considered.
We then took advantage of the more deeply sequenced

dataset to perform an in silicomerging of the cells previously

identified as group 1 (n = 6) and group 2 (n = 63) cells. In

silico merging of the data from the first group 1 resulted in

a nearly complete recapitulation of the human methylome

(17.1 M CpGs in group 1 and 27.1 M CpGs in group 2)

allowing for comprehensive epigenetic annotation of the

two groups. As a comparator, we performed in silicomerging

of all available CD49f cell data as well as the published he-

matopoietic progenitor cell (HPC) data (common lymphoid

progenitors [CLPs], common myeloid progenitors, GMPs,

multilymphoid progenitors [MLPs], and MPPs) (Farlik

et al., 2016). As before, we estimated the smoothened

methylation values of all CpG sites in the genome for

each group and called DMRs. This resulted in the identifica-

tion of 18,035 DMRs that were hypomethylated in group 1

compared with group 2, and 15,283 DMRs that were in

the opposite state. DMRs were enriched in promoters

(i.e., sequences between 2 kb upstream and 500 bp down-

stream of coding gene TSSs), depleted in intergenic

regions, and highly enriched in evolutionarily conserved

elements (Phastcon score [Siepel et al., 2005]; two-sided t

test, p � 0), suggesting that these DMRs have functional
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relevance (Figure 7C). GSEA of genes associated with

DMRs that were hypomethylated in CD49f cells compared

with HPCs showed these were enriched in pathways impli-

cated in HSC differentiation (Figure 7D). Interestingly,

DMRs hypomethylated in group 1 compared with group 2

were enriched in genes that are upregulated in leukemia

(Casorelli et al., 2006) and genes whose expression is upre-

gulated in hematopoietic progenitors (Ivanova et al.,

2002) (Figure 7D). For example, SERPING1, a gene that is up-

regulated in acute promyeolocytic leukemia (Casorelli et al.,

2006) and a prognostic marker for acute myeloid leukemia

(Laverdière et al., 2016), was found to contain a DMR that

was hypomethylated in group 1 cells (Figure 7E).
DISCUSSION

We describe an automated methodology for single-cell

DNA methylation profiling of single cells optimized for

genomic coverage. The increased coverage afforded by

our methodology allowed epigenetically distinct subsets

within highly purified phenotypes to be identified and

distinguished from developmentally both closely and



Figure 7. Heterogeneity within the Human CD49f Cell Compartment
(A) A rare subset of CD49f cells (group 1, 11% and 9% of all CD49f cells for donors 1 and 2, respectively) cluster away from the rest of the
cells after projection of PD values with MDS.
(B) Distributions of surface markers obtained during index sorting of single cells belonging to cluster 1 or cluster 2, split by donor.
(C) Observed over expected enrichment of DMRs. The ratios were calculated by dividing the fraction of DMRs that overlap each region set by
the fraction of the genome each region set occupies.
(D) Gene enrichment of DMRs that are hypomethylated in each comparison. The comparisons between group 1 and group 2 were separate
from the comparisons between CD49f cells and published data for other CD34+ phenotypes. Bars are gray if their FDR-corrected binomial q
value is <0.1.
(E) Example of a DMR near the SERPING1 gene. Methylation values were smoothened for each population of cells with Bsmooth and plotted.
Tick marks on the x axis represent the location of CpG dinucleotides. Computationally defined DMRs are highlighted in blue. The genes track
shows high confidence protein-coding transcripts obtained from Gencode v75.
See also Figure S7.
more distally related cell types. We therefore anticipate

that it will have utility in dissecting biologically important,

but potentially subtle, epigenetic changes in cells that drive

as yet poorly understood developmental and disease

processes.

Existing single-cell DNA methylation experimental pro-

tocols can be broadly categorized into those that include
random priming-based genomic preamplification and

those that do not. In general, single-cell experimental pro-

tocols that involve rounds of random genomic priming

(e.g., five in single-cell bisulfite sequencing [scBS-seq],

two in PBAL, one in single-nucleus methylcytosine

sequencing [snmC-seq], versus none in single-cell whole-

genome bisulfite sequencing [scWGBS]) result in libraries
Stem Cell Reports j Vol. 11 j 578–592 j August 14, 2018 587



with increased fragment diversity independent of the num-

ber of subsequent PCR cycles (Luo et al., 2017). However,

challenges associated with single-cell random priming

include a consistent decrease in aligned sequence fraction

and increased per-cell cost. Rounds of random priming

are inversely correlated with lower mapping efficiency

(average 25% in scBS-seq, 38% in PBAL, 53% in snmC-

seq, versus 55% in scWGBS), suggesting that external nu-

cleic acid sources are amplified in addition to the target

genome. Additional sequencing of the resulting library

pools can circumvent this problem as in the case of PBAL.

We have designed the PBAL approach with these limita-

tions in mind to optimize fragment diversity through a

combination of two rounds of randompriming and low-cy-

cle PCR. We have developed a qPCR-based assay that iden-

tifies failed wells from all causes prior to pooling and

sequencing. Taken together, these optimizations allow for

the generation of single-cell methylomes at lower cost

with diversities meeting or exceeding existing published

strategies.

To identify epigenetic states from stochastic and sparse

measurements characteristic of single-cell methylation da-

tasets, we have developed an analysis package (PDclust;

https://github.com/hui-tony-zk/PDclust) that leverages

the information content of single CpGs without the need

to infer the methylated states of missing data. We demon-

strated its application to CpGs within regulatory regions

(Cabezas-Wallscheid et al., 2014) through the identifica-

tion of an epigenetically distinct subpopulation of cells in

two different compartments of adult mouse bone marrow

(LSK and ESLAM cells) that match their known content

of HSCs defined by long-term repopulating assays: �3%

in LSKs (Osawa et al., 1996) and 40% in ESLAM cells

(Benz et al., 2012; Kent et al., 2009). Analysis of the result-

ingDMRs further revealed a statistically significant number

of hypomethylated regions in this subgroup that were asso-

ciated with genes implicated inmouse HSC function, ama-

jority of which have also been found to be transcriptionally

active in mouse HSCs (Wilson et al., 2015). This supports

previous evidence of a connection between CpG methyl-

ation status and expression examined at a single-cell level

(Angermueller et al., 2016; Hu et al., 2016). A significant

proportion of DMR-associated plasma membrane genes

were also heterogeneously expressed among individual

ESLAM cells including Cd82, a previously annotated

marker of HSCs (Hur et al., 2016), suggesting that this

might be useful in conjunction with the ESLAM protocol

to further enrich for HSCs from adult mouse bone marrow.

Application of PDclust to single human hematopoietic

cell datasets separated them according to established phe-

notypes and identified rare epigenetically distinct subpop-

ulations from which near complete reconstitution of the

methylome was achieved. Interestingly, within the highly
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purified CD49f population we identified donor as a signif-

icant source of consistent epigenetic heterogeneity, which

was reduced but not eliminated by correcting for personal

genetic variants. This observation is consistent with previ-

ous reports that showed genetic diversity as related to but

not accountable for all DNAmethylation differences (Gertz

et al., 2011; Xie et al., 2012) and suggests that in utero envi-

ronmental differences may be encoded within the HSC

compartment, as has been reported for bulk analysis (Bom-

marito et al., 2017; Provençal and Binder, 2015).

The ability to detect distinct epigenetic states that distin-

guish phenotypically defined hematopoietic cell types

from a few thousand stochastically sampled CpGs in single

cells is an intriguing observationwith potentially broad im-

plications. One possible explanation for this observation is

that phenotype-specific methylation signatures are charac-

terized by extensive redundancy such that distinct epige-

netic states can be accurately described by only a small frac-

tion of single-CpGmethylation states. In support of such a

notion, the unique components of a DNA methylation

‘‘age’’ signature are contained in �353 CpGs sites, presum-

ably representing a random sample of a total age signature

that involves many more sites not detected using the

reduced representation strategies from which these signa-

tures have been derived (Horvath, 2013). Regardless of

the mechanism, the ability to describe epigenetic states

in single cells from single-CpG measurements without

the need to infer adjacent methylation states has signifi-

cant implications for the design and analysis of single-cell

methylation studies.
EXPERIMENTAL PROCEDURES

This study involved animal research and is approved by the Uni-

versity of British Columbia under ACC certificate number A14-

0091. Human cord blood cells were obtained with informed con-

sent from mothers of normal babies according to UBC-approved

protocols (UBC REB Certificate H07-01945 to C.J.E.).

Sample Preparation
Murine bone marrow of 8- to 10-week-old mice was stained using

LSK or ESLAM staining cocktails (Table S1). HSCs were then sorted

using a FACSAria Fusion (Becton Dickinson, Franklin Lakes), flash-

frozen, and stored at �80�C until processing. Human cord blood

was obtained from two normal full-term deliveries. Cells were

stained and sorted with the CD49f cocktail as described elsewhere

(Knapp et al., 2017, 2018). Full details can be found in Supple-

mental Experimental Procedures.

PBAL Library Construction
All reagentswereDNaseI or UV treated to remove ambient contam-

inants, and all samples were processed with negative controls. All

liquid handling steps were carried out on the Bravo Automated

Liquid Handling Platform (Agilent Technologies, G5409A). Plates

https://github.com/hui-tony-zk/PDclust


containing single cells were lysed, spiked-in with bisulfite conver-

sion controls, and subject to automated bead-based bisulfite

conversion (Domanico et al., 2013). The resulting single-

stranded DNA was subject to random priming with random hex-

amers (30-phosphothioate, NNNN*N*N) and Klenow exo- (NEB,

M0212M) twice. The double-stranded DNA was then ligated with

forked Illumina adapters (Lorzadeh et al., 2016) and PCR amplified

for eight cycles. Successful wells were identified by qPCR targeted

to repetitive regions of the mouse or human genome, pooled,

and sequenced on an Illumina HiSeq 2,500. Full details can be

found in Supplemental Experimental Procedures.

Data Processing
The first six bases of read1 and read2 were trimmed using Trimga-

lore v0.4.0 and aligned usingNovoalignV3.02.10 (www.novocraft.

com) to themouse assemblyGRCm38 (mm10) or human assembly

GRCh37 (hg19). Duplicate readswere discarded using PicardV1.31

(http://picard.sourceforge.net), and methylation states were

called using Novomethyl V1.01 (www.novocraft.com). Fractional

methylation was merged for each CpG dinucleotide by taking a

weighted average of each cytosine using bedtools (Quinlan and

Hall, 2010). In most cases, only one base within a CpG dinucleo-

tide had coverage. In these cases, the methylation information of

the covered base was extrapolated to the other base. Processed

CpG calls were imported into R (V3.3.2) for downstream analysis.

We considered only autosomal CpG sites and CpG sites with a

methylation value of 0% or 100%.

CNVs in 5-Mb windows were called using Control_FREEC V7.0

(Boeva et al., 2012) with default parameters. Single cells with con-

version rates <96%, mappability <5%, <130,000 CpGs, and con-

taining more than 50 windows with CNVs were removed. Full de-

tails can be found in Supplemental Experimental Procedures.

Methylation of Adjacent CpGs in Single Cells
For single cells, we randomly sampled up to 100,000 CpG sites

either genome wide or within relevant genomic regions. For each

randomly sampled CpG site (CpG1), we analyzed 100 CpG sites

with coverage >0 before and after CpG1 and calculated the

genomic distance to CpG1 in base pairs.We also recorded whether

or not each CpG had the samemethylation status as CpG1, result-

ing in a 2-column table containing the distance and equality status

for each CpG for near CpG1. After combining all of the data in

these tables for every CpG1, we binned distances into 100-bp

bins and calculated the mean concordance as the fraction of

CpGs in each bin that were equal. For single LSK cells, we did

this for the ten single cells with the most CpG coverage. For the

bulk LSK cell data that were continuous, we instead calculated

the absolute difference in methylation between CpG1 and all

nearby CpGs, using only CpGs with coverage R5 to avoid low

coverage biasing potential CpG methylation values.

Pairwise Dissimilarity Clustering Using PDclust
For each pair of single cells, we calculated the average difference in

DNA methylation of all pairwise-common CpG sites to obtain PD

values. For genome-wide analysis, we took into consideration all

CpGs, while for each genomic region sets we only considered

CpG sites that lie within those respective regions. To group cells
together with similar PD values, we calculated Euclidean distances

between each pair of cells using the their PD values as features and

performed hierarchical clustering with Ward’s linkage (ward.D2 in

R). We used PD directly as input to multidimensional scaling

(cmdscale in R) for visualization of cells in 2D space. Cell groups

were annotated manually based on their visual distinctiveness

and their resulting hierarchal clustering patterns. PDclust has

been packaged into an R package, which can be downloaded

from https://github.com/hui-tony-zk/PDclust.
Differentially Methylated Region Analysis
To group cells that belonged to the same cluster, we treated

coverage of every CpG site as the number of cells with coverage

at that site, and treatedmethylation fraction as the fraction of cells

that had amethylated CpG at that site. We used Bsmooth (Hansen

et al., 2012) to obtain estimated CpG methylation at all CpG sites

in the genome. For eachCpG comparison between the two groups,

we calculated the Z score converted that into a two-tailed p value

assuming a normal distribution (pnorm function in R) with the

null hypothesis that the methylation is not different between

the two CpGs. p values were multiple test-corrected using an

FDR estimate, and CpGswith q value of <0.1 were called as dCpGs.

We grouped dCpGs together into DMRs if they were within 500 bp

of each other and only considered DMRs with R3 CpGs. We split

these DMRs into two groups depending on which population had

the lower methylation in each pair of comparisons, and associated

DMRs to the nearest protein-coding transcript. After filtering for

those DMRs in intergenic regions, exon1, or the promoter

(+2 kb/�0.5 kb), we removed DMRs that associated with the

same gene in both groups. We then performed GSEA for all

DMR-associated genes for each group using a supervised set of on-

tologies. Full details can be found in Supplemental Experimental

Procedures.

ACCESSION NUMBERS

Single-cell bisulfite sequencing (raw reads and CpG methylation

calls) can be accessed from the Gene Expression Omnibus at

GEO: GSE89545. Bulk LSK data can be accessed at GEO:

GSE95697. Human CD49f CpG methylation data can be accessed

at GEO: GSE106957. Raw reads for the human CD49f data can be

conditionally accessed from the European Genome-Phenome

Archive (EGAS00001002789).
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Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and five tables and can be found

with this article online at https://doi.org/10.1016/j.stemcr.2018.

07.003.
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