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Engineered in-vitro cell line 
mixtures and robust evaluation of 
computational methods for clonal 
decomposition and longitudinal 
dynamics in cancer
Hossein Farahani1,2, Camila P. E. de Souza1,2, Raewyn Billings1, Damian Yap   1, Karey 
Shumansky1, Adrian Wan1, Daniel Lai1, Anne-Marie Mes-Masson4,5,6, Samuel Aparicio1,2 & 
Sohrab P. Shah   1,2,3

Characterization and quantification of tumour clonal populations over time via longitudinal sampling 
are essential components in understanding and predicting the response to therapeutic interventions. 
Computational methods for inferring tumour clonal composition from deep-targeted sequencing data 
are ubiquitous, however due to the lack of a ground truth biological data, evaluating their performance 
is difficult. In this work, we generate a benchmark data set that simulates tumour longitudinal growth 
and heterogeneity by in vitro mixing of cancer cell lines with known proportions. We apply four different 
algorithms to our ground truth data set and assess their performance in inferring clonal composition 
using different metrics. We also analyse the performance of these algorithms on breast tumour 
xenograft samples. We conclude that methods that can simultaneously analyse multiple samples while 
accounting for copy number alterations as a factor in allelic measurements exhibit the most accurate 
predictions. These results will inform future functional genomics oriented studies of model systems 
where time series measurements in the context of therapeutic interventions are becoming increasingly 
common. These studies will need computational models which accurately reflect the multi-factorial 
nature of allele measurement in cancer including, as we show here, segmental aneuploidies.

Computational decomposition of human cancers into constituent clonal populations is a major goal of investiga-
tors seeking to measure and interpret clonal dynamics in tumours. Enumerating, characterizing and quantifying 
distinct cancer clonal populations within a tumour constitute essential steps toward elucidating properties gov-
erning disease natural histories and response to therapeutic intervention. The temporal growth of these cancer 
clonal populations measured via longitudinal sampling can be performed to a limited degree in patients through 
primary-relapse comparisons1,2 and in much finer granularity in pre-clinical studies through serial engraftment 
of patient material in immunocompromised mice3 or in passaged cell lines. Furthermore, recent developments in 
circulating tumour DNA (ctDNA) technology will decrease the need for invasive biopsies and consequently result 
in increased availability of longitudinal time series data from patients. Through longitudinal sampling, one can in 
theory measure the dynamic abundance of genomically defined clones through digital counting capacities of next 
generation sequencing devices, providing a framework to study relative fitness properties of differentiated clones. 
However, one can at best only represent variant allele fraction by direct interpretation of the resultant read data. 
To account for confounding factors of sample preparation, non-malignant cell populations and copy number 
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alterations (CNA), many computational methods have been developed for mapping variant allele fraction (VAF) 
to clonal prevalence (or variously mutation cellular prevalence or cancer cell fraction). These methods4–14 vary in 
their approaches (outlined in Table 1) according to type of input data, assumptions about phylogenetic processes 
and incorporation of copy number alterations in their inference model. The efficacy of these methods for iden-
tifying mutation clusters as markers of clones have not been rigourously evaluated in the context of longitudinal 
sampling, nor have any comparative studies been performed where ground truth about clonal population archi-
tecture and dynamics is known.

In this work we provide a benchmark data set that simulates tumour longitudinal growth of cancer clones in 
vitro using physical and controlled mixtures of cancer cell lines at known proportions. Our data consist of deep 
targeted sequenced reference and variant read counts from a set of single nucleotide variant (SNV) positions from 
mixtures of both diploid and aneuploid cancer cell lines with known genomic landscape. Because the true clonal 
architecture of real tumour samples is always unknown, our cell mixing data provide a more realistic model than 
synthetic data to assess the performance of different computational methods. In this work we present a compari-
son of the performance of PyClone6, Clomial4, SciClone5, and PhyloWGS7 (algorithms in bold in Table 1) on our 
ground truth datasets. We selected these four algorithms because they can be applied directly and simultaneously 
to all of our deep-targeted data samples. In addition to the mixture of cell lines we also analyze the performance 
of PyClone, Clomial, SciClone and PhyloWGS on breast tumour xenograft samples from the case SA494 studied 
by3 as for this case the authors provide single-cell data validating their results. To further study the strengths and 
limitations of these algorithms we conduct subsampling studies where we apply each algorithm to our cell mixing 
data downsampling read depth, number of SNV positions and number of samples.

Results
Selection and validation of data set.  To represent longitudinal tumour growth we designed two exper-
iments. In each experiment, DNA extracted from two different cancer cell lines were mixed at various propor-
tions forming a total of 14 samples (see Table 2). By ordering these mixture proportions as in Table 2, we are 
simulating the longitudinal growth of a tumour where one clonal population (e.g., red dotted line in Fig. 1(a)) 
expands while the other one (e.g., blue dotted lines in Fig. 1(a)) shrinks. The mixed samples were subjected to 
deep-targeted sequencing on 144 target SNV positions (see Fig. S1(a) of the Supplementary Information and 
Experiment details). Primers were designed to specifically amplify targeted regions of the genome which sur-
round these unique SNVs that identify the individual cell lines in the cell mixing model that we propose. In order 
for an accurate representation of the allelic prevalence, we sequenced those targeted regions deeply achieving a 
median coverage of 5488 and 11754 reads for Experiments 1 and 2, respectively. The cell lines used in this pro-
ject each had orthogonally derived bulk exome and copy number data. In Experiment 1 we used the HCT116 
and 184-hTERT-L2 cell lines as they are regarded as being nearly diploid (see15 and16, respectively). The cell line 
HCT116 was derived from the colon of an adult male with colorectal carcinoma and the 184-hTERT-L2 cell line 
was derived from human mammary epithelial cells immortalized by transduction with hTERT. For Experiment 
2 we chose the ovarian cancer cell lines TOV3133D and TOV3133G (see17). These are cell lines derived from one 
individual, are copy number complex (see Fig. S1(b,c) of the Supplementary Information) and thus provide a 
more biologically relevant model for solid epithelial cancers with genomic instability. The cell lines TOV3133D 
and TOV3133G will be referred to as DAH55 and DAH56, respectively.

An initial list of potential target heterozygous SNV positions were selected for each cell line by aligning exome 
sequences and calling SNVs. For each pair of cell lines A and B three sets of 48 target heterozygous SNVs were 
selected: one specific to cell line A, one specific to cell line B and one with SNVs shared between both cell lines. 
We then statistically validated each target position (see Section 2 of the Supplementary Information) obtaining a 
final list of targets for each experiment. For Experiment 1 we obtained 48 SNVs specific to the HCT116 cell line, 
42 SNVs specific to 184-hTERT-L2 and 38 shared ones. For Experiment 2 our validation resulted in 33 DAH55 

Algorithm/Property Input data Model/approach CNA Phylogenetic inference Multiple samples

Clomial4 DTS1 non-Bayesian generative Binomial N2 N Y3

SciClone5 DTS Bayesian Beta mixture Y N Y

PyClone6 DTS Dirichlet process, Beta-Binomial Y N Y

PhyloWGS7 WGS4 and DTS Tree-stick-breaking process, 
Binomial Y Y Y

TrAp8 CP5 deterministic search under 
constraints I6 Y N

LICHeE9 VAF7, CP perfect phylogeny model I Y Y

Rec-BTP10 VAF, CP binary tree partition I Y N

CITUP11 VAF, CP combinatorial algorithm I Y Y

SubCloneSeeker12 CP exaustive tree enumeration I Y Y

PhyloSub13 DTS predecessor of PhyloWGS without 
phylogenic correction for CNA Y Y Y

CloneHD14 WGS HMM8, variational bayes Y N Y

Table 1.  Algorithms to infer clonal/cluster composition and their properties/assumptions. 1Deep-targeted 
sequencing; 2no; 3yes; 4whole genome sequencing; 5celular prevalence; 6indirectly via CP; 7variant allele 
frequency; 8hidden Markov model.
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specific SNVs, 33 DAH56 specific and 39 shared ones. See Table S1(a) and (b) of the Supplementary Information 
for their genomic coordinates under the hg19 genome build. In addition, Table S1(a) and (b) contain the vari-
ant and reference counts for each SNV per sample for Experiments 1 and 2, respectively. Figure S2(a–d) of the 
Supplementary Information show the VAFs for the SNVs considering 100% mixtures (i.e., pure samples) for both 
experiments. Histograms of the VAFs for one of the mixed samples (mixture 6 in Table 2) for Experiments 1 and 
2 can be found in Fig. S2(e,f) of the Supplementary Information, respectively. The expectation is that each set of 
SNVs should be clustered together with shared prevalences close to the true mixing mixing proportions in the 
output of any analysis from the algorithms described below.

Overview of algorithms.  We focus on single nucleotide variants (SNVs) and, therefore, define a 
sub-population clone by a set of cells sharing the same mutational profile. Some algorithms infer the number and 
prevalence of clones in a tumour sample(s), while other algorithms try to cluster mutations either by their cellular 
prevalences or by their variant allele frequencies.

PyClone6, is hierarchical Bayesian statistical model for estimating cellular prevalences from deeply targeted 
sequenced somatic mutations followed by clustering them based on the estimated cellular prevalences. PyClone 
considers allelic imbalances generated by copy number alterations and normal-cell contamination. It estimates 
the parameters of interest via MCMC methods. The algorithm outputs a posterior density for each mutation’s 
cellular prevalence and a similarity matrix containing the probability of any two mutations occurring in the same 
cluster. Two mutations are assigned to the same cluster if they occur at very similar cellular prevalence in the 
sample(s).

Zare and co-authors4 propose Clomial, a generative Binomial model that incorporates the allelic frequencies 
of a set of somatic mutations from multiple tumour samples to infer the prevalences and genotypes of a specified 
number of clones. The authors assume that all mutations are at heterozygous and diploid loci. The parameters of 
interest are estimated via the Expectation-Maximization (EM) algorithm18 assuming independence of the sam-
ples, independence of the mutations and non-zero normal cell contamination at each sample. In order to choose 
the number of clones, the authors propose using a method such as the Bayesian Information Criterion (BIC)19.

Miller and co-authors5 introduce SciClone, a method for estimating the number and composition of clusters 
of mutations across one or more samples. SciClone uses an approach based on a variational Bayesian Beta mix-
ture model to cluster primarily variant allele frequencies (VAFs) from heterozygous and diploid loci. The method 
automatically infers the number of clusters, however, in contrast to PyClone it does not estimate the cellular prev-
alence of each mutation. Although the focus of the algorithm is copy number neutral loci, Miller et al. claimed 
that integration of copy number altered loci is possible. However, our results show that mutations in aneuploid 
loci are automatically not assigned to any of the clusters and sometimes even SNVs in diploid regions cannot be 
assigned to any cluster.

Deshwar and colleagues7 propose PhyloWGS, a non-parametric Bayesian method to cluster SNVs and infer 
tumour phylogenetic trees. Unlike his predecessor PhyloSub13, PhyloWGS introduces a phylogenic correction 
for VAFs in loci in regions with copy number alterations. PhyloWGS employs an MCMC method for inference. 
This method can be applied to a single sample or to multiple samples simultaneously, however, in case of mul-
tiple samples, the input copy number information for each SNV position has to be the same across all samples 
or alternatively aneuploid in one sample and diploid in remaining ones. Because in our Experiment 2 each SNV 
position has copy number information varying across samples we can only apply PhyloWGS to each single sam-
ple separately. For Experiment 1, where all targets in all samples are in diploid regions, we can apply PhyloWGS 
simultaneously to all samples.

Mixture ID* Cell line A Cell line B

2 0 1

14 0 1

7 0.1 0.9

19 0.1 0.9

6 0.25 0.75

18 0.25 0.75

5 0.5 0.5

17 0.5 0.5

4 0.75 0.25

16 0.75 0.25

3 0.9 0.1

15 0.9 0.1

1 1 0

13 1 0

Table 2.  Mixing proportions of cell lines in Experiment 1 and Experiment 2. In Experiment 1, A and B 
correspond to the 184-hTERT-L2 and HCT116 cell lines, respectively. In Experiment 2, A and B correspond to 
DAH55 and DAH56, respectively. *As per laboratory protocol.

http://S1(a)
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Figure 1.  Results for Experiment 1 and 2. (a) Experiment 1 (diploid cell lines HCT116 and 184-hTERT-L2). 
PyClone predicted cluster prevalences for each mixture. The vertical axis indicates the range of cluster 
prevalence. The horizontal axis indicates the true mixing proportions used to generate each sample, where 
x;y corresponds to proportion of 184-hTERT-L2 and HCT116, respectively. The dashed red and blue lines 
represent the true simulated tumour longitudinal growth for 184-hTERT-L2 and HCT116, respectively, and 
the solid lines show the predicted longitudinal growth given by the estimated cluster prevalences. The red solid 
line corresponds to a cluster containing 41 184-hTERT-L2 specific SNVs, the blue solid line to a cluster of 48 
HCT116 specific SNVs, the green solid line to a cluster of 33 shared SNVs and the purple solid line to small 
cluster containing three shared SNVs. (b) Experiment 1 (diploid cell lines HCT116 and 184-hTERT-L2). Clomial 
predicted clonal prevalences for each mixture. The red, blue and green solid lines correspond to the predicted 
clonal prevalences for 184-hTERT-L2, HCT116 and normal clones, respectively. The other plot components 
are as in (a). (c) Experiment 1 (diploid cell lines HCT116 and 184-hTERT-L2). PhyloWGS predicted cluster 
prevalences for each mixture. The red, blue and green solid lines correspond to the predicted cluster prevalences 
for 184-hTERT-L2, HCT116 and shared cluster, respectively. The other plot components are as in (a). (d) 
Experiment 1 (diploid cell lines HCT116 and 184-hTERT-L2). Box plots of the absolute difference between 
estimated and true SNV cellular prevalences across all samples for PyClone, PhyloWGS and Clomial. (e) 
Experiment 2 (aneuploid cell lines DAH55 and DAH56). PyClone predicted cluster prevalences. The horizontal 
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Experiment 1: mixture of diploid cell lines.  In Experiment 1 there are three ground truth clusters of tar-
geted positions: one for HCT116 cell line, another one for 184-hTERT-L2 cell line, and a third cluster composed 
of the shared targets between these two cell lines. In addition the prevalences corresponding to the HCT116 and 
184-hTERT-L2 clusters follow the simulated longitudinal tumour growth, i.e., the true mixing proportions across 
samples.

We applied PyClone to all 14 mixture samples in Experiment 1 simultaneously with all final 128 target SNV 
positions having copy number two and tumour content of 100%. Figure 1a shows the inferred PyClone clusters 
and their estimated prevalences (solid lines) along with the true simulated longitudinal tumour growth (red and 
blue dashed lines corresponding to 184-hTERT-L2 and HCT116, respectively). The prevalence of a cluster in a 
given sample is obtained by calculating the median of the posterior cellular prevalence means of the mutations 
in that cluster. PyClone inferred three major clusters (blue, red and green solid lines in Fig. 1a) with estimated 
prevalences close to the expected ones. All SNV positions specific to cell line HCT116 are correctly assigned 
to the same cluster. Except by one target, all SNVs specific to 184-hTERT-L2 are in the same cluster. Another 
major cluster was obtained containing only shared mutations. A few smaller clusters were also formed: one with 
three shared SNV positions and three mono-clusters (see Table S2 and the co-clustering plot in Fig. S3(a) of the 
Supplementary Information).

We applied Clomial to Experiment 1 data considering three, four and five clones and used the BIC score pro-
posed and implemented in4 to choose the best model. Based on this criterion, we chose three clones (see Table S3 
of the Supplementary Information): a clone of normal cells (normal clone), a cell line HCT116 clone and a cell 
line 184-hTERT-L2 clone. In this scenario the clonal prevalences learned by Clomial can be plotted in the same 
way as PyClone cluster prevalences, however, the green solid line now corresponds to the normal clone. Because 
our samples consist of only cancer cells, we expect the normal clone prevalences to be very close to zero. Figure 1b 
shows that the inferred clonal prevalences by Clomial for each cell line are close to true mixing proportions. All 
SNVs were assigned to their correct clone (see Fig. S3(b) of the Supplementary Information).

SciClone was applied to all samples in this experiment and it performed reasonably. Table S4 of the 
Supplementary Information shows that the target SNVs are assigned into four clusters, however SciClone could 
not assign 25 SNVs to any cluster. Cluster 1 consists of only shared positions. Clusters 2 and 3 correspond to 
cell lines HCT116 and hTERT-184, respectively. Figure S3(c) of the Supplementary Information depicts its 
co-clustering plot for Experiment 1.

We also applied PhyloWGS simultaneously to all 14 samples in Experiment 1 considering all targets across 
all samples in diploid copy number regions. PhyloWGS inferred three major clusters (blue, red and green solid 
lines in Fig. 1c) with estimated prevalences close to the true ones. All shared targets are correctly assigned to one 
major cluster. Except by one target, all mutations specific to 184-hTERT-L2 are in the same cluster. Another major 
cluster contains only HCT116 specific targets. One small cluster containing two HCT116 specific target positions 
was also obtained (purple solid line in Fig. 1c) along with two mono-clusters (see Table S5 and Fig. S3(d) of the 
Supplementary Information).

In order to compare the accuracy of PyClone, Clomial and PhyloWGS in estimating the mutation cellular 
prevalences, we calculated the absolute prevalence errors, that is, the absolute difference between the estimated 
and true cellular prevalence values for each SNV in Experiment 1. Figure 1d shows the absolute errors across 
all samples for each algorithm. The median absolute error and interquartile ranges are presented in Table S6 
of the Supplementary Information. It is important to recall that SciClone does not infer mutation prevalences 
and, therefore, cannot be included in this comparison. We can observe in Fig. 1d the presence of outliers in the 
box plots corresponding to PyClone and PhyloWGS, these outliers correspond to SNVs that were assigned to 
wrong clusters leading to estimated prevalences far from the true ones. Because Clomial assigns all SNVs to the 
correct clusters we do not observe any outliers in the distribution of its absolute errors. We can also conclude that 
PyClone leads to absolute errors that are significantly smaller than the ones corresponding to Clomial considering 
a nonparametric statistical test robust to outliers (pairwise one-sided Wilcoxon rank sum test with correction for 
multiple testing, p-value < 2 × 10−16).

We considered the V-measure20 to compare the clustering performance of PyClone, Clomial, PhyloWGS and 
SciClone. The V-measure represents the homogeneity and completeness of a clustering procedure result. To sat-
isfy the homogeneity criterion, a clustering procedure must assign only those SNVs that are members of a single 
group to a single cluster. Completeness is symmetrical to homogeneity and in order to satisfy the completeness 
criterion, a clustering method must assign all of those SNVs that are members of a single group to a single cluster. 
The weighted harmonic mean of homogeneity and completeness gives rise to the V-measure. In the optimal case 
where a clustering procedure assigns all SNVs to their correct groups the V-measure is one.

Table 3 shows that in Experiment 1 the clustering performance of Clomial is optimal and the best among all 
algorithms with V-measure equals to one.

and vertical axes are as in (a). The dashed red and blue lines represent the true simulated tumour longitudinal 
growth for DAH55 and DAH56, respectively. The solid lines show the PyClone predicted cluster prevalences. 
The red solid line corresponds to a cluster containing 25 DAH55 specific SNVs, the blue solid line to a cluster 
of 24 DAH56 specific SNVs, the green solid line to a cluster of mainly shared SNVs and the purple solid lines to 
four other small clusters. (f) Experiment 2 (aneuploid cell lines DAH55 and DAH56). Box plots of the absolute 
difference between estimated and true SNV cellular prevalences across all samples for PyClone using the correct 
copy number information, PyClone assuming diploid loci, Clomial and PyClone with noisy copy numbers.

http://S2
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Experiment 2: mixture of aneuploid cell lines.  Experiment 2 contains the data corresponding to the 
aneuploid cancer cell lines DAH55 and DAH56. Below we present the results of applying PyClone to these data as 
this is the only algorithm that can be applied to our multi-sample data simultaneously while allowing each SNV 
to have a different copy number in each sample.

In this experiment we applied PyClone to all 14 samples with tumour content of 100% and sample specific 
SNV copy numbers calculated by averaging the copy numbers obtained from SNP6 data (see Methods) for each 
cell line according to the sample mixing proportions. Similar to Experiment 1, PyClone also inferred three major 
clusters with estimated prevalences close to expected ones (see Fig. 1e). One major cluster is composed of 25 
DAH55 specific SNVs, another one of 24 DAH56 specific SNVs, and a third one of mainly shared SNVs. Besides 
the three major clusters there were four other small clusters and one mono-cluster (see Table S7 and Fig. S4(a) 
of the Supplementary Information). The orange box plot in Fig. 1f shows the absolute errors in estimating the 
mutation cellular prevalences across all samples for PyClone considering the correct copy number information. 
Regarding the clustering performance PyClone shows a V-measure equals to 0.63 (Table 3).

To study the importance of using the correct copy number information in PyClone, we maintained the 
same variant and reference read counts while assuming all SNVs are in diploid loci. We also applied PyClone to 
Experiment 2 data perturbing the copy number information by randomly adding or subtracting copies from each 
SNV. Figure 2a,b show that using incorrect copy numbers greatly deteriorates the performance of PyClone as 
estimated prevalences are far from the true mixing proportions. Figure S4(b,c) of the Supplementary Information 
present the corresponding co-clustering plots.

Although Clomial is built for samples with diploid targeted positions, we also applied it to the data from 
Experiment 2 in order to investigate the effects of assuming inaccurate copy number information in clonal infer-
ence. We considered three, four and five clones and based on the BIC score (see Table S8 of the Supplementary 
Information) four clones were chosen instead of the correct answer of three clones (see Fig. 2c). We also applied 
SciClone to the data from Experiment 2 assuming diploid loci obtaining eight different clusters (see Table S9 of 
the Supplementary Information).

Figure 1f shows the box plots of the absolute errors in estimating the mutation cellular prevalences across all 
samples for PyClone using the correct copy number information, PyClone assuming diploid loci, PyClone with 
noisy copy numbers as well as Clomial with four inferred clones. Table S10 of the Supplementary Information 
presents the median value of the absolute errors and the interquartile ranges for each of these approaches. We 
observe that PyClone with correct copy numbers leads to absolute errors that are significantly smaller than the 
ones corresponding to PyClone assuming diploid loci, PyClone with noisy copy numbers or Clomial (pairwise 
one-sided Wilcoxon rank sum test with correction for multiple testing, p-values < 2 × 10−16). Table S11 of the 
Supplementary Information contains the corresponding V-measure, homogeneity and completeness scores for 
each approach considered in Experiment 2.

Performance of the algorithms on breast tumour xenograft samples.  In addition to the mixtures 
of cell lines we also assess the performance of PyClone, Clomial, SciClone on breast tumour xenograft samples 
from case SA494 studied by Eirew et al. in3. In contrast to our cell mixture samples, the true clonal composition 
of the bulk tumour and xenograft samples is unknown. In order to validate their findings from deep-targeted 
sequencing on bulk DNA, Eirew et al. also performed targeted sequencing at single cell resolution. We consider 
their single cell data as ground truth and used them to measure the performance of each algorithm.

The bulk deep-sequenced data for case SA494 comprises of reference and variant allele counts for 89 SNV 
target positions along with their major and minor copy number information (see Fig. 3a) from one tumour 
sample and three xenograft passages. We applied PyClone, Clomial and SciClone to all 89 SNV targets in the 
SA494 data set simultaneously for all samples. A subset of the original 89 SNVs were used by Eirew et al. in their 
targeted-deep sequencing experiment at single cell resolution in 42 isolated tumour nuclei and 56 isolated nuclei 
from a xenograft passage. Using Bayesian phylogenetic inference Eirew et al. found that two major clones of 
nuclei emerged in the SA494 case, one comprising tumour nuclei and the other xenograft nuclei. By considering 
the presence and absence of the SNVs in each nuclei based on a threshold for VAFs we can conclude that there are 
17 targets that are shared between tumour and the fourth passage xenograft. There are 11 targets specific to the 
tumour and 7 targets specific to the fourth passage xenograft. Using these results as the ground truth, we assessed 
the performance of each algorithm via co-clustering plots.

Figure 3b–d show the co-clustering performance of PyClone, SciClone and Clomial, respectively. The per-
formance of these algorithms on tumour and xenograft data follows the same pattern as their performance on 
the cell mixture data. Figure 3b shows that PyClone only misclassifies two out of the 35 SNVs verified by single 
nuclei sequencing. Figure 3d presents the results of applying Clomial to the data considering three clones. We 

Algorithm Experiment 1 Experiment 2 (correct copy numbers)

PyClone 0.92 (1.0; 0.85) 0.63 (0.78; 0.52)

Clomial 1.0 (1.0; 1.0) —

SciClone 0.72 (0.84; 0.65) —

PhyloWGS 0.94 (1.0; 0.88) —

Table 3.  V-measure clustering performance of PyClone, Clomial, SciClone and PhyloWGS. In parentheses 
homogeneity and completeness, respectively.

http://S7
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can observe in Fig. 3d that six SNVs were misclassified. SciClone delivers the worst performance being unable to 
assign 15 SNVs to any cluster and assigning 15 SNVs to the wrong cluster (see Fig. 3c).

Subsampling studies.  In order to further study the strengths and limitations of these algorithms we con-
ducted subsampling studies where we apply PyClone, Clomial, PhyloWGS and SciClone to our cell mixing sam-
ples simultaneously downsampling read depth, number of targeted SNVs and number of samples (see Methods).

Figure 4a–c show how the V-measure changes in Experiment 1 when downsampling the number of reads, 
number of targeted SNVs and number of samples, respectively. We can observe in Fig. 4a that SciClone is the 
only algorithm showing very small V-measure values when decreasing read depth and it actually does not con-
verge when read depth is equal or smaller than one hundred. The other algorithms do not show great changes 
in V-measure when varying read depth. Regarding downsampling the number of targets, Fig. 4b shows that 
increasing the number of targets leads to smaller values of V-measure for PyClone whereas for Clomial it leads to 
larger V-measure values. Because PyClone is a non-parametric Bayesian clustering method increasing the num-
ber of SNVs tends to increase the number of unnecessary cluster splits, which harms completeness and, therefore, 
decreases the V-measure score. Figure 4c shows that the clustering performance of PhyloWGS is greatly improved 
by increasing the number of samples, however, the same pattern cannot be observed for the other algorithms.

We also assessed how the error in estimating mutational cellular prevalences changes when downsampling 
the read depth, number of SNVs and number of samples (see Fig. 4d–f, respectively). We observe in Fig. 4d 

Figure 2.  Experiment 2 (aneuploid cell lines DAH55 and DAH56). Effect of using incorrect copy numbers. (a) 
PyClone predicted cluster prevalences assuming diploid loci. The solid lines show the PyClone predicted cluster 
prevalences. The red solid line corresponds to a cluster of 21 DAH55 specific SNVs, the blue solid line to 27 
DAH56 specific SNVs, the green solid line to a cluster of mainly shared SNVs and the purple solid lines to two 
other clusters, one of size 17 and the other of size 8 (see Supplementary Table S13). The other plot components 
are as in Fig. 1e. (b) PyClone predicted cluster prevalences adding random noise to copy number information. 
The solid lines show the PyClone predicted cluster prevalences. The red solid line corresponds to a cluster 
of 29 DAH55 specific SNVs, the blue solid line to 27 DAH56 specific SNVs, the green solid line to a cluster 
of 34 mainly shared SNVs and the purple solid line to a cluster of 9 mainly shared SNVs (see Supplementary 
Table S14). The other plot components are as in Fig. 1e. (c) Clomial predicted clonal prevalences. The red, blue, 
and purple solid lines correspond to the predicted clonal prevalences for the three estimated clones and the 
green solid line corresponds to the normal clone (see Tables S15 and S16 of the Supplementary Information).

http://S13
http://S14
http://S15
http://S16
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large errors in estimating cellular prevalence for read depth values smaller than one hundred. However, we do 
not observe a great change in error values when read depth is greater or equal than one hundred. Regarding 
downsampling the number of targets, Fig. 4e shows that PyClone leads to smaller errors as the number of targets 
increase. The same pattern is not observed for the other algorithms. We can observe in Fig. 4f that increasing the 
number of samples leads to smaller error variability for PyClone.

In the simulation studies using Experiment 2 data we considered only PyClone as this is the only algorithm 
that can be applied simultaneously to all samples with each SNV having different copy number information 
across samples. Figure 5a shows that read depth does not have a great impact in PyClone clustering performance 
measured via V-measure. Regarding the number of targets, as in the results for Experiment 1, we observe smaller 
values of completeness and, therefore, smaller values of V-measure when the number of SNVs gets larger (see 
Fig. 5b). We can observe in Fig. 5c that increasing the number of samples does not have a great impact in the 
V-measure scores, however, it does improve homogeneity.

Figure 5d–f show the impact in cellular prevalence estimation caused by downsampling read depth, number 
of targets and number of samples, respectively. As in Experiment 1, Fig. 5d shows large errors when read depth is 
smaller than one hundred. We observe in Fig. 5e that increasing the number of targets leads to smaller errors. We 
can also observe smaller variability in the errors by increasing the number of samples (see Fig. 5f).

In addition to the results described above, in Section 3 of the Suplementary Information we present the results 
of applying PyClone, SciClone and PhyloWGS to the data of each single sample in our experiments separately. 
Clomial was not considered in this single sample analysis as it can only be used when the number of samples is at 
least equal to the number of clones due to constraint problems.

Discussion
Measuring and modeling dynamics in cancer cell populations from longitudinal sampling is paramount to 
understanding the properties and patterns leading to clinical endpoints such as treatment resistance. As the 
field moves toward a “population genetics” framework for ascribing quantitative fitness attributes to genotypes 
under interventional selection, a necessary first step is to accurately measure the abundance of genetically distinct 

Figure 3.  Performance of the algorithms on a real world data set validated with deep targeted sequencing 
data at single nuclei resolution from3. (a) Distribution of copy numbers across the targeted SNVs. (b–d) Co-
clustering performance of PyClone, SciClone and Clomial, respectively.

http://3
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Figure 4.  Results of simulation studies for Experiment 1 (diploid cell lines HCT116 and 184-hTERT-L2). (a) 
Experiment 1, V-measure, downsampling read depth. The vertical axis indicates the V-measure score obtained 
by each algorithm for each read depth considered when downsampling the number of variant and reference 
reads aligned to each SNV. (b) Experiment 1, V-measure, downsampling the number of targets. Box plots of 
the V-measure scores obtained by applying each algorithm to each simulated data set under each number of 
targeted SNVs considered. Note that outliers were omitted from the box plots. (c) Experiment 1, V-measure, 
downsampling the number of samples. Box plots of the V-measure scores obtained by applying each algorithm to 
each simulated data set for each possible number of samples considered. Note that outliers were omitted from 
the box plots. (d) Experiment 1, prevalence error, downsampling read depth. Box plots of the absolute errors in 
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populations. Here, we show that correct computational inference of the prevalence of clones in experimentally 
simulated time series next generation sequencing data must account for copy number alterations present in aneu-
ploid cells. We generated a dataset from controlled admixtures of two cell line pairs to mimic growth trajectories 
of two clones where one clone grows from low abundance to saturation at the expense of the other. As the cells are 
real experimental reagents, this dataset represents the closest real’ground truth’ dataset in the field and provides a 
substrate for further computational tool development and benchmarking. Importantly, it will complement in silico 
datasets which often fall short of capturing all sources of experimental variation and thus may only sub-optimally 
represent the properties of datasets observed in practice. Using this dataset, we show through quantitative com-
parisons of methods representing mutation clustering and phylogenetics inspired models that inference of both 
cancer cell fraction and correct clustering of mutations are highly dependent on the consideration of copy num-
ber state of the allele being measured. This is best exemplified through comparison of both diploid and aneuploid 
cell mixtures. In diploid scenarios, prevalence estimates are quite accurate for the models we tested. However in 
the aneuploid setting, performance was significantly better for the model which incorporated correct prior copy 
number information. These results will inform future functional genomics oriented studies of model systems 
where time series measurements in the context of therapeutic interventions are becoming increasingly common. 
As we showed in patient derived xenografts, temporal sampling can reveal important properties of clonal evo-
lution including reproducible clonal dynamics3. The advent of genetic intervention screens using CRISPR/Cas9 
and other related systems will undoubtedly then benefit from measuring clonal dynamics to interpret fitness 
and selection characteristics. Finally, we expect our results will inform time series modelling from patients using 
non-invasive techniques such as measuring alleles in cell-free ctDNA in plasma. Advances in ctDNA technology 
opens the opportunity for non-invasive longitudinal monitoring of tumour burden in patients as a function of 
treatment regimens. All of these (and other) experimental designs will need to leverage computational models 
which accurately reflect the multi-factorial nature of allele measurement in cancer including, as we show here, 
segmental aneuploidies. In summary, we provide a dataset substrate and a framework for ground-truth based 
evaluation of models for the field as it continues its progress towards routine measurement of cancers as dynamic, 
and evolving systems.

Methods
Experiment details.  Cell culture.  The 184-hTERT cell lines were cultured at 37 °C, 5% CO2, in serum-
free mammary epithelial cell basal media (MEBM, Lonza), supplemented with mammary epithelial cell growth 
media single quots (Lonza), 5 μg/ml transferrin (Sigma), 1.25 M of isoproterenol (Sigma Aldrich). HCT116 cell 
lines were cultured at 37 °C, 5% CO2, in McCoys 5A media (Sigma Aldrich) supplemented with 10% FBS (Sigma 
Aldrich). The TOV3133D and TOV3133G cell lines were cultured at 37 °C, 5% CO2, in a 1:1 mix of media 199 
(Sigma Aldrich) and media 105 (Sigma Aldrich) supplemented with 10% FBS.

Cell mixing.  Cell mixing was carried out according to a sample’s DNA concentration. DNA was extracted 
from pelleted cells and quantified. The extracted cell proportions were then mixed together according to DNA 
concentration. For example in order to calculate how much sample is required for each mix all samples are to 
be at 5 ng/μl per reaction for 150 reactions, (5 × 150 = 750 ng in total). In order to calculate mixing amounts: 
first the calculation of concentration was required for each mix. 0.9 (90% of 750 ng) = 675 ng and 0.1 (10% of 
750 ng) = 75 ng. Then the required amount of sample for the mix was calculated, If 0.9 sample had a DNA con-
centration of 482 ng/μl, then 675/482 = 1.40 μl of sample was added, and if 0.1 sample had a DNA concentra-
tion of 8.8 ng/μl then 75/8.8 = 8.5 μl sample was added to mix. The required sample volumes were mixed and 
re-suspended with TE buffer to obtain the required volume for qPCR.

Exome data alignment and SNV calling.  Exome sequences were aligned using BWA and SNVs were called using 
Samtools in Experiment 1 and MutationSeq21 in Experiment 2.

PCR primer design and primer selection.  The 2-Step PCR sequencing method used primers that were designed as 
singleplex primers. Chosen target positions were entered into Primer3, an online program used for primer design. 
(Primer3 File - http://primer3.sourceforge.net). See Section 2 of the Supplementary Information for Primer3 
specific settings. After Primer3 design all selected target primers were validated with in-silico PCR using the 
UCSC online program (http://genome.ucsc.edu/cgi-bin/hgPcr). Targets positions that passed all design QC were 
used. In order for primer compatibility with the MiSeq chemistry, adapter sequences were added to each primer. 
Sequence information was supplied by Illumina. Primers with the Illumina adapter sequence were ordered 
desalted from IDT at 0.5 nM concentration, final volume 250 μl.

All primers that were singleplex-designed were tested for amplification performance using the qPCR method 
described below. PCR products were also run on a 2% agarose gel (Sigma Aldrich) to check the size of the band 
and quality of each primer pair. If primers passed all QC checks, they were used in the experiments. In total 48 

estimating cellular prevalence obtained by applying each algorithm to each read depth considered. Note that 
outliers were omitted from the box plots. (e) Experiment 1, prevalence error, downsampling number of targets. 
Box plots of the median absolute errors obtained by applying each algorithm to each simulated data set under 
each number of targeted SNVs considered. Note that outliers were omitted from the box plots. (f) Experiment 1, 
prevalence error, downsampling number of samples. Box plots of the median absolute errors obtained by applying 
each algorithm to each simulated data set under each number of samples considered. Note that outliers were 
omitted from the box plots.

http://primer3.sourceforge.net
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Figure 5.  Results of simulation studies for Experiment 2 (aneuploid cell lines DAH55 and DAH56).  
(a) Experiment 2, V-measure, downsampling read depth. The vertical axis indicates the V-measure, homogeneity 
and completeness scores obtained by applying PyClone for each read depth considered when downsampling 
the number of variant and reference reads aligned to each SNV. (b) Experiment 2, V-measure, downsampling 
the number of targets. Box plots of the V-measure, homogeneity and completeness scores obtained by applying 
PyClone to each simulated data set under each number of targeted SNVs considered. (c) Experiment 2, V-
measure, downsampling the number of samples. Box plots of the V-measure, homogeneity and completeness 
scores obtained by applying PyClone to each possible number of samples considered. (d) Experiment 2, 
prevalence error, downsampling read depth. Box plots of the absolute errors in estimating cellular prevalence 
obtained by applying PyClone to each read depth considered. Note that outliers were omitted from the box plots 
to facilitate visualization of the median, first and third absolute error quartiles. (e) Experiment 2, prevalence 
error, downsampling number of targets. Box plots of the median absolute errors obtained by applying PyClone 
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primers for cell line 1, 48 primers for cell line 2 and 48 primers shared across cell lines 1 and 2 were selected. 
Table S12a and b in the Supplementary Information contain selected primers and corresponding sequences for 
Experiments 1 and 2, respectively.

Molecular biology techniques.  DNA was extracted using the QIAamp DNA mini kit (Qiagen), using the protocol 
for cultured cells. DNA was eluted with 20 μl elution buffer to increase DNA concentration. DNA concentration 
and quantitation was measured by flourometry using Qubit, dsDNA BR Assay (Life Technologies) per the man-
ufacturer’s protocol. DNA quality was assessed using the NanoDrop ND1000 (ThermoScientific) with 1 ul of 
extracted genomic DNA as per the manufacturers protocol.

qPCR was performed with 5 ng of genomic DNA template, 5 μl SYBR Select Mastermix 2x (Life Technologies), 
and 0.2 μM each of forward and reverse primers. Each primer pair was performed as a singleplex reaction. 
Cycling conditions were as follows: Standard curve (AQ), 50 °C for 2 min, followed by 40 cycles of [95 °C for 10 s, 
95 °C for 15 s, 60 °C for 1 min]. A dissociation step was also added to the end of the program. The ABI 7900HT 
was used for all qPCR experiments.

The PCR for the 2-step MiSeq method was performed with 1 μl of the qPCR ExoSAP DNA template, 10x 
FastStart HiFi Rxn buffer w/o MgCl2, 25 mM MgCl2, DMSO, 10 ml PCR grade Nucleotide, 5 U/μl FastStart HiFi 
Enzyme (all from Roche), and 4 μl of each I7 and I5 Barcode-Adapters (Illumina). PCR cycling conditions were 
as follows: 95 °C for 10 min, followed by 15 cycles of [95 °C for 15 s, 60 °C for 30 s, 72 °C for 1 min, 72 °C for 3 min] 
and 4 °C hold.

The Bioanalyser was used as a quality control step for determining the correct size distribution of the 
SPRIselect and magnetic bead purified samples, and then pooled as one sample for MiSeq sequencing. Quality 
control and size distribution of the samples was performed using the Agilent DNA 1000 DNA kit (Agilent 
Technologies) per the manufacturer’s protocol yielding to 1 μl of the sample required.

Amplicon library construction - Singleplex PCR sequencing method.  After samples were mixed, 5 ng total of 
genomic DNA was used per reaction for each sample. The protocol used for amplicon library construction and 
Singleplex PCR sequencing is the same as in3.

Deep targeted data alignment and SNV calling.  Deep targeted sequences were aligned using BWA and SNVs 
were called using MutationSeq21 in both experiments.

Experiment 2 copy number information.  Copy number information for Experiment 2 was obtained from 
OncoSNP-SEQ22 analysis of the DAH55 and DAH56 cell line copy number array measurements (SNP6).

Subsampling studies.  In order to downsample the total number of reads of each SNV in a particular sample 
to a certain read depth, say 10x, we proceeded as follows. First we computed the average total number of reads 
across all SNVs in that sample. Next we calculated what proportion of the average total number of reads the desir-
able read depth of 10x corresponds to. For each SNV we multiply this proportion to its total read counts obtaining 
the downsampled read depth, and we then randomly and uniformly sample this downsampled number of reads 
from all variant and reference reads corresponding to that SNV. As a result we obtain an average read depth across 
all SNVs of 10x. We then applied each algorithm to each downsampled data set.

To downsample the number of SNVs in our data we considered various total number of target SNV positions 
(20, 40, 60, 80 and 100 targets) and proceeded as follows. For each possible number of targets we generated 20 
simulated data sets by randomly picking the desirable number of targets. For example, for 40 targets, we gener-
ated 20 simulated data sets by randomly picking 40 targets from our original target list for each data set. We then 
applied the different algorithms to each data set under each possible number of targets considered.

In order to downsample the number of samples considering different number of samples (from 3 to 10) we 
did as follows. For each possible number of samples we randomly generated 20 sets of data with that number of 
samples. So, for example, for three samples we randomly generated 20 combinations of 3 samples from our total 
of 14 samples making sure all combinations were different. We then applied the different algorithms to each data 
set under each possible number of samples considered.

Software information.  PyClone 0.13.0 available from http://compbio.bccrc.ca/software/pyclone.
Clomial 1.3.0 available at R-bioconductor.
SciClone available from https://github.com/genome/sciclone.
PhyloWGS available from https://github.com/morrislab/phylowgs.
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