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Abstract Given the success of targeted agents in specific populations it is expected that
some degree of molecular biomarker testing will become standard of care for many,
if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with
targeted “panel” sequencing of selected mutations. Recent advances in genomic
technology enable the generation of genome-scale data sets for individual patients.
Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful
somatic alterations, we sought to establish processes to integrate data from whole-
genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014,
100 adult patients with incurable cancers consented to participate in the Personalized
OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for
whole-genome and RNA sequencing. Computational approaches were used to identify
candidate driver mutations, genes, and pathways. Diagnostic and drug information were
then sought based on these candidate “drivers.” Reports were generated and discussed
weekly in a multidisciplinary team setting. Other multidisciplinary working groups were
assembled to establish guidelines on the interpretation, communication, and integration
of individual genomic findings into patient care. Of 78 patients for whom WGA was
possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the
patients received treatments motivated by WGA. Our experience indicates that a
multidisciplinary team of clinicians and scientists can implement a paradigm in which
WGA is integrated into the care of late stage cancer patients to inform systemic therapy
decisions.
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INTRODUCTION

Cancer is a complex biological process. Historically, cancers have been classified according
to their anatomic site of origin (e.g., lung, breast, liver, colon), but within these groupings
there are multiple subtypes with differences in response to treatment and overall behavior.
Oncologists traditionally base their treatment recommendations on the reports of clinical tri-
als or on their personal anecdotal experiences that may, or may not, reflect the individual
characteristics of the patient sitting before them. The consequence of this decision-making
process is that many patients, including the majority with advanced cancers, receive toxic
and expensive chemotherapy treatments that may convey limited or no clinical benefit.

In a few subtypes of cancers, specific mutations or other aberrations have been identified
and successfully targeted using novel systemic therapy agents (Druker et al. 2001; Slamon
et al. 2001; Lynch et al. 2004; Paez et al. 2004; Pao et al. 2004). The now well-established
mutational, spatial, and temporal heterogeneities of malignancies imply that assessment
of the biology of individual cancers may result in better alignment of treatment choices
with individual patient characteristics (Dienstmann et al. 2013). One widely used approach
amenable to improved characterization of individual cancers is DNA sequencing (MacConaill
2013).

Currently, there are a number of DNA sequence–based tests that are used in cancer med-
icine, ranging from single gene tests for mutations with well characterized prognostic and
predictive significance, such as epidermal growth factor receptor (EGFR)–activating muta-
tions in lung cancer, tomore expansive panels whichmight include hundreds of defined can-
cer genes and mutational “hot spots” (Dias-Santagata et al. 2010). Technological advances
have now brought the possibility of more extensive interrogation of the genome through
exome, transcriptome, and whole-genome sequencing to a clinical reality (Garraway 2013;
Andre et al. 2014). Given the rapid advances of genome technologies, the gap between
what science and technology can deliver and its application to clinical practice has never
been wider, presenting important challenges and opportunities as we endeavor to navigate
and close that gap.

In 2010, we were the first to publish an example of clinical treatment decision-making
based on whole-genome analysis (WGA) of a rare tumor (Jones et al. 2010). Tumor and nor-
mal genome sequences were used together with RNA sequence data to successfully “per-
sonalize” a treatment plan for an adult patient with an adenocarcinoma of the tongue with
lungmetastases. Motivated by the success of this effort, and enabled by technology advanc-
es and concomitant decreasing costs, we have expanded beyond this experience to a broad-
er patient population reflecting the province-wide mandate of the BC Cancer Agency. This
expansion has involved the assembly of a network of clinicians, pathologists, and researchers
committed to the use of “rapid” whole-genome and transcriptome analysis to aid treatment
decision-making for advanced pediatric, adolescent, and adult cancers in our Personalized
OncoGenomics (POG) program. Although not currently required by Canadian regulations,
all sample processing and sequencing was performed in a CAP-accredited facility within
our sequencing center. As part of assessing the feasibility of scaling the POG program to
the population level, we have collated the experience gained from the enrollment of the first
100 patients and the WGA of 78 patients. This collective experience has been used to ad-
dress critical questions regarding the practical application of POG in a broad clinical context,
and has resulted in the evolution of a consultative multidisciplinary “tumor group” structure
that meets weekly at our tertiary care cancer hospital, frequently including participants join-
ing by video conference. Our perception is that there is a growing momentum in the oncol-
ogy community to develop similar clinical sequencing programs (Meric-Bernstam et al. 2013)
and, motivated by the opportunities for global collaborations, partnerships, and a desire to
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promote advances in the area, we seek to share our perspectives in this report. We thus pre-
sent an overview of the POG program with particular emphasis on the clinical challenges we
face and solutions we have implemented.

Setting the Stage for Translational Oncogenomics
The British Columbia Cancer Agency (BCCA) coordinates the provincial cancer program for a
population of more than 4.6 million through six regional cancer centers in the province of
British Columbia, Canada. The clinical aspects of this study are coordinated through the
Vancouver Cancer Centre which is a tertiary care cancer center adjacent to another BCCA
facility, Canada’s Michael Smith Genome Sciences Centre (GSC), which presently has the
capacity to sequence more than 600 trillion raw bases annually, an amount of DNA approx-
imately equivalent to ∼6000 30× human genomes per year.

The history of close collaboration between the clinicians at the BCCA and scientists at the
GSC paved the way for POG’s creation and expansion. The POG clinical team includes the
majority of medical oncologists at the Vancouver Centre (18 of 22) as well as pediatric oncol-
ogists; a group ofmotivated interventional radiologists and surgeons for tissue procurement;
and medical geneticists, ethicists, and pathologists who are critical to the analysis, interpre-
tation and clinical communication of whole-genome data sets from patients.

Approach to Recruiting Patient Participants
In the POG program, medical oncologists recruited patients from their general oncology
clinics with the intention of sampling a variety of cancer histologies. The enthusiasm of pa-
tients and participating oncologists for POG is tempered by the realization that whole-
genome data are complex and, as applied to cancer treatment planning, somewhat contro-
versial and, at present, experimental. Therefore, we chose to include in these early stages
of POG only those patients with incurable cancers, typically patients who had limited or
no standard treatment options available. This cohort could thus be considered a “phase 1
trial eligible” population.

Recruitment of potential patients has not been a limiting factor particularly because of
the increasing global media attention and the marketing of cancer panels directly to pa-
tients. It is now common that the request to have “cancer sequencing” performed is initiated
by patients or families. Sophisticated marketing techniques from private enterprises across
the world have created a sense among many patients that personalized cancer treatments
are possible and beneficial for management of their disease.

The POG project launched in July 2012 and enrolled one patient per month for the first
5 months and scaled up accrual once process refinements were implemented. The study
schema is outlined in Figure 1.

As of August 2014, 100 adult and six pediatric patients had been consented to the
study, representing 30 different cancer types. Patients donated fresh tumor biopsy and
blood samples, the latter to act as a source of normal DNA for identification of somatic
alterations. Of these 106 cases, we have completed sequencing and analysis of 85 patients
(78 adults) (Fig. 2). Twenty-one patients were not sequenced or were removed from
study for a variety of reasons including the following: biopsy was not technically possible,
biopsy tumor content was inadequate for sequencing, patient withdrawal, or unexpected
death. Table 1 outlines patient demographics and baseline characteristics of the adult
patients.

The local Clinical Research Ethics Board approved this protocol. One of themost obvious
differences between the POG protocol and other clinical trials is the fact that we could
not predict which, if any, systemic therapy agents might be identified based on the genomic
profiling. Therefore, the protocol and ethics approval does not include information about
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specific treatments and it stipulates that any treatments given to a patient based on the POG
information should be considered experimental and should not replace standard of care or
any potentially curative therapies.

Approach to WGA
Recognizing the diversity of genes and mutations that have been linked to cancer pathways,
our intention from the outset was to assess the clinical feasibility and potential utility of WGA
of patient tumors rather than panel or exome approaches. The primary question we sought
to address was whether we could design a system that would make WGA as clinically acces-
sible as single gene or panel tests. Although the cost of WGA is higher than that of panels,

Figure 1. Schema outlining a high-level model of the process from the time of patient consent to the gener-
ation of a Personalized OncoGenomics report and discussion with the patient.

Figure 2. CONSORT diagram of the 100 adult patients consented into the Personalized OncoGenomics
(POG) study.
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the technology continues to advance and costs continue to decline while offering the oppor-
tunity to capture the full spectrum of somatic and germline abnormalities already linked to
cancers. Further, WGA offered the opportunity to discover new lesions in our cohort. The
comprehensive characterization of genomes and transcriptomes, including de novo assem-
bly approaches, had a number of important advantages, including the identification of struc-
tural variants such as translocations and inversions, loss of heterozygosity, and copy number
variants, all of which are known to play roles in oncogenesis.

Our emphasis on the integrative analysis of genomes and transcriptomes in a clinical con-
text distinguishes our efforts from those of others and provides a valuable resource of com-
prehensively characterized tumors with associated clinical data that will be used to compare
future patient samples to aid in their interpretation. We envision the expansion of such a re-
source through our continued efforts will help change the way advanced cancers are treated
in BC and beyond.

Approach to Tissue Acquisition, Processing, and Requirements
The transcriptome data were required for identifying and evaluating dysregulated gene ex-
pression, confirming genomic alterations such as single nucleotide variants, indels, and gene
fusions, which were further validated by alternate approaches such as targeted sequencing
and fluorescence in situ hybridization (FISH) where appropriate, and identifying candidate

Table 1. Basic demographics

Adult cohort

Gender (N = 100)

Male 17
Female 83

Median age at consent 52

Average (mean) number of lines of chemotherapy received before POG (range) 3 (0–9)
Primary cancer

Breast 38

GI (includes pancreas) 14
Lung 11

Gynecologic 10

Head and neck/sarcoma/primary unknown 4/4/4
Peritoneal mesothelioma 3

Adrenal/hematologic/skin 2/2/2

Other 6

Pediatrics cohort

Gender (N = 6)
Male 4

Female 2

Median age at consent 10
Primary cancer

Neuroblastoma 3

Neurofibroma 1
Sarcoma 1

Melanoma 1

POG, Personalized OncoGenomics; GI, gastrointestinal.
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drug targets for verification using standard immunohistochemistry. As the quality of tran-
scriptome data from paraffin-embedded tissue was generally inferior to data obtained using
fresh biopsy material, our process was linked to the availability of fresh or fresh-frozen tissue.
To obtain fresh biopsy material, we included in our team colleagues in diagnostic imaging,
surgery and dermatology who routinely perform biopsies.

Biopsy materials and blood samples were immediately delivered to a participating pa-
thologist to confirm the diagnosis, ensure that there was sufficient viable tumor present in
the biopsy and mark the areas most suitable for extraction of nucleic acid. The material
was then sent for DNA and RNA extraction. Aliquots of nucleic acid were used for analysis
on the Ion Torrent AmpliSeq Cancer panel (Singh et al. 2013; Snuderl et al. 2014) and for
whole genome and transcriptome analysis on the Illumina HiSeq platform as previously
described.

The blood samples generally served as sources of “normal” (or “germline”) DNA to allow
identification of somatic variants. Considering both costs and a level of sensitivity adequate
to detect dominant clones in the cancer sample, we elected to sequence the patient germ-
line derived DNA to ∼40-fold redundant sequence coverage and the tumor sample to ex-
ceed 80-fold redundant coverage. Tumor and blood DNA samples were also subjected to
sequence analysis using a commercially available AmpliSeq Cancer panel, which provided
the opportunity for comparison of whole genome versus focused approaches for treatment
planning purposes. In particular, we wished to assess the relative uptake of the results from
these approaches among members of the clinical team.

RNA-seq was used to profile gene expression in tumor material to an average depth of
200 million reads. This depth of coverage was chosen to maintain sensitivity (i.e., in hetero-
geneous tumors [Shah et al. 2012; The Cancer Genome Atlas Research Network 2014]) at
costs affordable to the POG project.

The POG process demands a significant investment of resources. In an effort to ensure
meaningful results, library construction was restricted to those specimens most likely to yield
high-quality genome and transcriptome data. To this end, core needle and surgical biopsy
tissues were the preferredmethod for tissue procurement. Pathologists with expertise in mo-
lecular genetic pathology reviewed all specimens for overall cellularity and tumor content.
Early experience showed that specimens with tumor content determined by the sequencing
data to be below 45% resulted in reduced sensitivity for detection of mutations as well as
increased uncertainty in interpretation of gene expression information. Furthermore, due
to the different approaches in measuring tumor content we typically observed inconsisten-
cies between tumor content estimations as determined by pathologists and from that deter-
mined from the sequencing data. To take this into account, a 55% tumor content as
estimated by pathology became the cut-off tumor content for samples to be sequenced.
The stringency of the tissue requirements may exclude many patients from analysis and
therefore borderline cases with tumor contents of >30% were reviewed by the team for ad-
equacy; the pathologist who performed this second reviewwas blinded to the actual cut-offs
for proceeding with library construction.

An average of five core needle biopsies were required to obtain an adequate amount of
material for DNA and RNA sequencing. Table 2 outlines our experience with tissue procure-
ment. Overall, 6% of consented cases requiredmore than one biopsy to obtain sufficient ma-
terial, and 16% could not be sequenced due to low tumor content. Based on these findings,
the team did not support tissue acquisition via fine needle aspirates including those from en-
doscopy or bronchoscopy, or fluid samples from the pleural or abdominal space, as these
specimens tended to have inadequate tumor content for whole-genome sequencing. In ad-
dition it was noted that samples from patients who were on or had just completed chemo-
therapy tended to have low tumor content and thus obtaining biopsies from such patients
was discouraged when possible.
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Approach to WGA and Reporting
Our approach to data analysis included the identification of somatic single nucleotide and
copy number variants, indels, gene fusions, genome rearrangements, and dysregulated
gene expression patterns. Such features were identified using a purpose-built data analysis
pipeline that includedwhole genome and transcriptome assembly, and detailed annotation.
The focus of the analysis was (1) to integrate information from various data types to infer the
genes and pathways that were possibly functionally critical to individual malignancies and
to identify candidate therapeutic vulnerabilities; and (2) to rationalize treatment planning.
For RNA analysis, the tumor transcriptome was compared with a compendium of data avail-
able in the public domain (primarily The Cancer Genome Atlas [TCGA] data set). For each
case three expression metrics were generated: a fold change in gene expression compared
with a compendium of normal tissues (Illumina Body Map 2.0), a percentile ranking of gene
expression within similar tumor types (TCGA) and a within-sample expression rank of each
gene. To assess differential gene expression relative to normal tissues, tumor transcriptome
reads per kilobases per million mapped reads (RPKM) data were compared with a compen-
dium of 16 different tissue samples (Illumina Body Map 2.0). For each gene a fold-change in
RPKM between normal versus tumor sample was calculated. In cases in which there was no
direct tissue match to the primary site of the disease the fold change was calculated against
the average RPKM of the entire data set. In addition to the fold-change calculation a percen-
tile value was placed on the individual gene expression with reference to a tumor sample
data set. To do this TCGA (level 3) gene expression data for 5976 tumor samples (represent-
ing 25 cancer types) was downloaded (https://tcga-data.nci.nih.gov/tcga/) and analyzed to
calculate RPKM values. Tumor RPKM data were then ranked within the data by tumor type
or the average of the entire data set. Expression outliers were evaluated case-by-case, taking
into account supporting evidence from other data sources and in relation to other potentially
relevant genomic events.

Syntheses of the analyzed data were compiled into a standardized report format, de-
signed by a committee including pathologists and medical oncologists. Individual case
reports included a list of potentially actionable or informative features emerging from
the data analysis. Analysis results were also delivered in conference-style format to our

Table 2. Summary of types of biopsies performed on the adult population, the average tumor content as
estimated by a pathologist, and the frequency with which each technique yielded tumor content more
than the 55% threshold we required to proceed with sequencing

Type of biopsy N= 100
Average tumor content

(estimated by pathologist) (%)
Frequency in which the sample
had tumor content >55% (%)

Ultrasound guided core 54 64 76

CT-guided core 7 57 57

Surgery 9 69 78

Excisional or incisional 16 70 88

Bite or punch biopsy 4 70 100

Bronchoscopic/
endoscopic core
biopsy

3 67 100

Endoscopy or
broncoscopy or EBUS

4 44 25

Blood draw 1 N/A 100

Thoracentesis 2 50 48

N/A, not applicable; CT, computed tomography; EBUS, endobrachial ultrasound.
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interdisciplinary genomics tumor group, in which summaries of the somatic alterations most
relevant to treatment planning were presented. Included in the presentation were candidate
therapies reported in the literature to impact molecules and pathways identified in the anal-
ysis. The levels of evidence to support relationships between somatic alterations and candi-
date drug classes were included in these reports.

The purpose of the report was to provide information to the clinician to use at their dis-
cretion in treatment planning and in discussing treatment options with the patient. The data
were not considered prescriptive, but rather as offering additional information to consider in
the management of individual cancer patients. We noted that clinicians were most comfort-
able when several abnormalities coalesced around a pathway, (e.g., evidence of both “acti-
vating” copy number changes and high gene expression levels), and only rarely used single
somatic alterations to inform a treatment decision.

Communication of Genome Analysis Results
The application of whole-genome analysis to cancer treatment planning required a strategy
for the communication of WGA to oncologists and pathologists. Our approach to commu-
nication involved the formation of a new multidisciplinary Clinical Genomics Tumour
Board. The creation of the Board provided a venue for case reporting in which discussion
of every case involved an introduction to the case by the treating oncologist, followed
by a report from the pathologist assigned to the case and finally a review of the WGA
data presented by a bioinformatician. The bioinformatics report focused the identification
of candidate driver mutations and pathways, and possible therapeutic strategies to target
these.Most of the discussion revolved around pathway diagrams in which somatic alterations
and gene expression patterns were integrated in an effort to depict inter-pathway inter-
actions. Medical oncologists participating in the Board discussion then sought to achieve
a consensus opinion for treatment options, which was then documented for the primary on-
cologist to take back to their patient for discussion. These Tumor Board meetings served to
expose and educate both researchers and clinicians in the interpretation and application of
WGA as a treatment decision aid.

Patients were given the option to opt in for return of germline variants. As a part of the
consent process, subjects were made aware that germline findings could potentially be re-
ported to their treating oncologists and used to inform their treatment options. All germline
variants identified were reviewed and classified. Potentially pathogenic variants were report-
ed for expedited review to an ethics subcommittee consisting of molecular pathologists,
medical geneticists, oncologists and bioinformaticians. Variants deemed to be ACMG
Class 4 or 5 (likely pathogenic or pathogenic) were reported to the case clinician. All germline
variants of uncertain significance were communicated to the Clinical Genetics Laboratory
(CGL) for independent evaluation, the results of which were then reported to the ethics sub-
committee for final determination of whether the variant in question was of sufficient clinical
relevance to be reported back to the treating clinician. Where appropriate, patients were
also offered referral to the Hereditary Cancer Program for genetic counseling.

Essential to the evolution of our process was the reciprocal exchange of information be-
tweenmedical professionals and genome scientists. This reciprocal knowledge transfer, con-
ducted weekly in the form of our Tumor Board discussions, appears to be a necessary feature
of our program and served to inform the process; assess the impact or success of WGA as
applied to treatment planning, and avoid possible inappropriate interpretation of WGA
and attendant risks as we seek to expand the application of WGA into standard cancer care.

To establish and evolve processes and guidelines for the management and discussion
of incidental germline findings and variants of uncertain significance (Lim et al. 2014),
we established a POG Ethics and Policy subcommittee. This subcommitte included an
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ethicist, genetic counselors, medical geneticists, pathologists, bioinformaticians, and med-
ical oncologists.

Turnaround Time for Whole-Genome Analysis
Lengthy turnaround times (TATs) for the production and analysis of whole-genome data has
hampered its clinical application in cancer, where rapid treatment decisions are frequently
required. Advances in sequencing technology and computational approaches have reduced
TATs generally, and so we sought to evaluate TAT in the context of our POG effort. In par-
ticular, we wished to understand whether an individual whole-genome analysis could be
produced and interpreted in a time frame that was relevant to patient treatment planning.
Most patients and physicians would find 10–14 d an acceptable amount of time to wait
for results that might inform treatment decisions and this is our goal going forward. For
the first 100 POG patients, the median time from biopsy to presentation of the report was
58 d. However, this TAT was skewed by the lack of automated analysis routines and other
procedures at the start of the project. The evolution of POG process routines including au-
tomation that, when implemented, had a significant impact on TAT, decreasing it from 80 d
for the first set of patients to 50 d over time. Although our panel results were delivered on
average in 7 working days, the majority of the time panel results did not yield information
that changed clinical management. Of 81 patients with panel results, 73% carried mutations
that were classed as informative but not actionable, the majority of which were mutations in
TP53 (55%). In the remaining 27% of cases no variants were detected using the panel. The
overall time frames for the POG process are included in Figure 1.

The POG team has thus worked to establish and implement efficient standard operating
procedures to automate many aspects of whole-genome analysis. Most challenging to auto-
mate, however, and where whole-genome analysis seems poised to significantly contribute
to treatment planning, is the final stage of data analysis that links somatic alterations and
gene expression patterns to drug information. This process is currently manually intensive,
involving PhD level scientists engaged in substantial literature review and interpretation
for each case. Achieving these linkages is challenging because the relevant literature base
is constantly evolving, and the quality and utility of the literature to our application varies
hugely. However, because each possible therapeutic recommendation we have generated
has been carefully evaluated in the context of the literature available at the time the case was
analyzed, our data have established a framework for comparison of automated approaches.
For example, we can now imagine evaluating the specificity and sensitivity of automation
against the 78 cases we have analyzed manually.

Frequency of Informative or Actionable Information
One of the most important questions driving the POG project centered around the frequen-
cies of informative or actionable variants and gene expression patterns. Key to addressing
this question was a range of opinions of what “informative” and “actionable” meant, and
thus the need to erect local definitions for these terms.

The Tumor Boardmeeting served as an important venue to articulate opinions regarding
the extent to which particular observations were informative or actionable, and it was within
Board Discussions that a basis for locally relevant definitions emerged (Fig. 3). Briefly, we de-
fined the term “informative” to mean “identification of an interesting feature that may not
have prognostic or therapeutic relevance at this time” and the term “actionable” to mean
“identification of a potential target or risk factor that affects the treatment plan.” The local
definitions were important because, for example, candidate drugs that might be obtained
in an alternate setting, but not locally, were considered informative but not actionable by
our clinicians. Similarly, the detection of very common mutations such as TP53 was not
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considered to be actionable. This landscape is of course a changing one, as new trials acces-
sible to our patient population could result in a reclassification of observations as actionable.
Other considerations around the extent to which observations were considered actionable
included: availability of a drug in a local clinical trial, off-label use of an approved therapy,
when a therapy was available but the patient was too unwell to receive treatment, and
when the observation aided in the diagnosis of classification of the cancer. Figure 3 presents
these definitions and the variety of clinical implications we encountered.

Data on treatments that were informed by our POG process, and outcome data, were re-
corded and are outlined in Table 3 and Figure 2. Seventy-eight of the adult patients had
biopsies yielding sufficient tissue for sequencing and analysis. In 83% of these cases, the cli-
nician who was making treatment decisions with the specific patient indicated that the data
information were informative. In five of these cases the diagnosis was either changed to a
different primary tumor than originally diagnosed or a primary was suggested in primary un-
known cases (Jamshidi et al. 2014). Given the fragile nature of these phase 1–like patients it
was encouraging that 71% of patients received a POG-informed treatment and 62% of those
treated achieved some disease control.

It should be noted that this feasibility study of 100 patients did not specify tumor mea-
surements or the timing of assessments and as such the response data are not comprehen-
sive. Furthermore the significant number of cases with the primary diagnosis of breast cancer
(38 of 100) has the potential to skew the response assessment toward that expected for a
refractory breast cancer cohort. Clinician-assessed response to POG-informed therapy was
recorded as the best response: progressive disease, some disease control or reduction in
size, or remarkable or unexpected disease control (usually compared with the patient’s
response to prior regimens or the median response seen in that patient population) (Von
Hoff et al. 2010; Tsimberidou et al. 2012). This aspect of response to POG-informed therapy
is of critical importance to study in future protocols but it was not the objective or design of
this initial program.

Figure 3. Working definitions for genomics output and potential clinical impact of this data.
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The difficulty of designing and conducting an N of 1 series clinical trial with hard re-
sponse or survival endpoints is challenging (Sleijfer et al. 2013; Andre et al. 2014) and be-
yond the scope of the feasibility study we report here.

DISCUSSION

Oncologists are becoming rapidly educated about the range of genomic platforms that exist
and there is an established comfort level with the development of drugs linked to companion
diagnostic tests. Although POG has been an extremely successful first step in evaluating the
utility of whole-genome analysis in cancer treatment planning using a multidisciplinary ap-
proach, significant work remains to be done as we imagine scaling the approach to larger
populations.

The smooth integration of genomic information into the standard of care will demand a
TAT from consent to report of <3 wk. Over the course of 100 cases, we were able to

Table 3. Data for the adult Personalized OncoGenomics (POG) population describing how often the data
was felt to be informative or actionable by the treating medical oncologist and the clinician-assessed
response to any POG-informed treatment that was delivered

N= 100
adults Percentage

Sufficient tissue for POG analysis 78 78%

Insufficient tissue for POG analysis

Biopsy content too low for sequencing 16 16%

Unable to biopsy due to specific patient factors 6 6%

Informative 65 65% total;
83% when sequencing was
possible

Actionable 55 55% total;
71% when sequencing was
possible

Patients received POG-informed treatment 34 34% total;
44% when sequencing was
possible;
62% when there was
something actionable
identified

Well patients eligible for POG-informed treatment who
did not receive therapy

8 8%

No treatment available 2 2%

Not eligible for identified clinical trial 2 2%

Already on an alternative clinical trial 1 1%

Unknown 3 3%

Clinician-assessed clinical or radiographic improvement
in cancer (including stable disease)

14 41% (14 of 34)

Actionable target identified but the patient was too
unwell or death before POG-informed therapy could
be offered

13 24% (13 of 55)

Amended or clarified the diagnosis or primary site 5 5% total;
6% when sequencing possible
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significantly reduce our TAT from ∼80 to 50 d. However additional improvements are re-
quired. One approach to reduce TAT is to create a biopsy process around a team of radiol-
ogists and surgeons devoted to the activity. Another way forward is to refine the process by
which high-quality sequencing can be done on archival tumor specimens for both DNA and
RNA. If feasible and reliable this would potentially allow for sequencing of existing tumor
banks as well as shorten the current time frame for patient participants.

Another challenge that needs to be addressed on several fronts is the ability to act on
the findings of the genomic analysis with an available drug. Most actionable findings
from POG are targeted chemotherapy agents either approved or in clinical trials. For geno-
mics to be truly integrated as a decision-making tool these treatments need to be available
and thus an active clinical trials program is critical. An ideal schema for genomic studies is
the “basket”-like trial in which a broad spectrum of cancer patients who may harbor one
or more of a defined cluster of potential genomic biomarkers can gain access to novel tar-
geted therapies. This not only provides drug access to individual patients but can also great-
ly contribute to the drug development knowledge-bases within the pharmaceutical industry
and/or collaborative groups. In parallel with the clinical trial initiatives there needs to be the
recognition that off-label use of some targeted agents may be an appropriate strategy to
use and a process could be developed to obtain such agents, at least on a trial basis.
Perhaps with the ongoing genomic and biomarker education of regulatory authorities it
may come to pass that a patient may only need to have an identifiable target or bio-
marker(s), and not necessarily a specific tumor type, to gain access to a targeted systemic
therapy.

The clinical feedback that is an integral component of the POG program is critical to the
emerging success of WGA in a clinical setting. When an individual on POG receives a sys-
temic therapy treatment and either responds or does not respond, this information is fed
back to the genome analytic team and entered into a database that will highlight this obser-
vation in future analyses. In reality, most genetic variants are of unknown clinical utility and
how best to use sequence data to guide cancer treatment choices is still within the realm
of academic research. There is a global need to continuously update the relationships be-
tween genomic alterations, cancer biology and the drugs that target these potential drivers.
It is clear that a cooperative effort, including data sharing between institutions nationally and
internationally, will help create more accurate and efficient analytic systems.

CONCLUSION

Based on the success of targeted agents in specific populations it is expected that some de-
gree of molecular biomarker testing will be the standard of care for many, if not all cancers in
the near future. There is no longer a question of whether genome sequencing should or can
be done, it is a question of who should do it, on whom, at what time points, on which spec-
imens and with what tools.

The optimal use of next-generation sequencing technology beyond the research setting
is a critical question that needs to be explored and developed in an academic setting, or in-
dustry and private enterprise will define its use for us; we have a responsibility to educate
ourselves, our colleagues, and our patients to best integrate this powerful tool into health
care.

In a clinical oncology hospital, POG has demonstrated the feasibility of this approach,
addressed these issues, identified challenges, and outlined a path forward. Ultimately, the
eventual accumulation of thousands of comprehensive genome and transcriptome sequenc-
es, matched to therapies and relevant clinical outcomes, will change cancer medicine and
provide both more effective and possibly less toxic therapeutic options to our patients.
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