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Abstract
Although molecular prognostics in breast cancer are among the most successful examples of
translating genomic analysis to clinical applications, optimal approaches to breast cancer clinical
risk prediction remain controversial. The Sage Bionetworks–DREAM Breast Cancer Prognosis
Challenge (BCC) is a crowdsourced research study for breast cancer prognostic modeling using
genome-scale data. The BCC provided a community of data analysts with a common platform for
data access and blinded evaluation of model accuracy in predicting breast cancer survival on the
basis of gene expression data, copy number data, and clinical covariates. This approach offered the
opportunity to assess whether a crowdsourced community Challenge would generate models of
breast cancer prognosis commensurate with or exceeding current best-in-class approaches. The
BCC comprised multiple rounds of blinded evaluations on held-out portions of data on 1981
patients, resulting in more than 1400 models submitted as open source code. Participants then
retrained their models on the full data set of 1981 samples and submitted up to five models for
validation in a newly generated data set of 184 breast cancer patients. Analysis of the BCC results
suggests that the best-performing modeling strategy outperformed previously reported methods in
blinded evaluations; model performance was consistent across several independent evaluations;
and aggregating community-developed models achieved performance on par with the best-
performing individual models.

INTRODUCTION
Breast cancer is the leading female malignancy in the world (1) and is one of the first
malignancies for which molecular biomarkers have exhibited promise for clinical decision
making (2–5). Biomarkers can be used to divide the disease into predictive (the likelihood
that a patient responds to a particular therapy) or prognostic (a patient’s risk for a defined
clinical endpoint independent of treatment) subcategories. Such molecular subcategorization
highlights the possibilities for precision medicine (6), in which biomarkers are leveraged to
identify disease taxonomies that distinguish biologically relevant groupings beyond standard
clinical measures and can potentially inform treatment strategies.

A decade after early achievements in the development of prognostic molecular classifiers
(called signatures) of breast cancer based solely on gene expression analysis (4, 5, 7), a large
number of signatures proposed as markers of clinical risk prediction either fail to surpass the
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performance of conventional clinical covariates or await meaningful prospective validation
[for example, the MINDACT (8, 9) and TAILORx/RxPONDER (10) trials]. Although gene
expression–based breast cancer prognostic tests have been successfully implemented in
routine clinical use, the application of molecular data to guide clinical decision making
remains controversial (11).

Slow progress to evolve useful molecular classifiers may relate to poor study design,
inconsistent findings, or improper validation studies (12). Data and code that underlie a
potential new disease classifier are often unavailable for diligence. In addition, the rigor and
objectivity of assessing molecular models are confounded by the tendency of data
generation, data analysis, and model validation to be combined within the same study. This
leads to the “self-assessment trap,” in which the desire to demonstrate improved
performance of a researcher’s own methodology may cause inadvertent bias in elements of
study design, such as data set selection, parameter tuning, or evaluation criteria (13).

A potential response to such problems is leveraging the Internet, social media, and cloud
computing technologies to make it possible for physically distributed researchers to share
and analyze the same data in real time and collaboratively iterate toward improved models
based on predefined objective criteria applied in blinded evaluations. The Netflix
competition (14) and X-Prize (15) have successfully demonstrated that crowdsourcing novel
solutions for data-rich problems and technology innovation is feasible when substantial
monetary incentives are offered to engage the competitive instincts of a community of
analysts and technologists. Alternatively, a game-like environment has been used to seek
solutions to biological problems, such as protein (16) and RNA folding (http://
eterna.cmu.edu/web), thereby appealing to a vast community of gamers. Others have
demonstrated that both fee-for-service [Kaggle (17) and Innocentive (18)] and open-
participation computational biology challenges (19) [CASP (20) and CAFA (21)] can be
used as potential new research models for data-intensive science. Despite the wide breadth
of areas covered by these competitions, a key finding is that the best models from a
competition usually outperform analogous models generated using more traditional isolated
research approaches (14, 17).

Building on the success of crowdsourcing efforts such as DREAM to solve important
biomedical research problems, we developed and ran the Sage Bionetworks–DREAM Breast
Cancer Prognosis Challenge (BCC) to determine whether predefined performance criteria,
real-time feedback, transparent sharing of source code, and a blinded final validation data set
could promote robust assessment and improvement of breast cancer prognostic modeling
approaches. The BCC was designed to make use of the METABRIC data set, which
contains nearly 2000 breast cancer samples with gene expression and copy number data and
clinical information. The availability of such a large data set affords the statistical power
required to assess the robustness of performance of many models evaluated in independent
tests, but is subject to the trade-off of using (overall) survival time in a historical cohort as
the clinical endpoint, rather than potential endpoints that could be driven by clinically
actionable criteria, such as response to targeted therapies. Therefore, the aim of this
Challenge was not direct clinical deployment of a full-fledged suite of complex biomarkers.
Indeed, we expect this study to serve as a pilot that lays the groundwork for future breast
cancer challenges designed at the outset to answer clinically actionable questions. With this
in mind, the BCC resulted in the development of predictive models with better performance
than standard clinicopathological measures for prediction of overall survival (OS). The
performance of these models was highly consistent across multiple blinded evaluations,
including a novel validation cohort generated specifically for this Challenge.
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RESULTS
The BCC included 354 registered participants from more than 35 countries. Participants
were tasked with developing computational models that predict OS of breast cancer patients
based on clinical information (for example, age, tumor size, and histological grade; see
Table 1), mRNA expression data, and DNA copy number data. The BCC used genomic and
clinical data from a cohort of 1981 women diagnosed with breast cancer (the METABRIC
data set) (22) and provided participants with authorized Web access to data from 1000
samples as a training data set, and held back the remaining samples as a test data set (see
Materials and Methods for more details on the Challenge design). Participants used the data
to train computational models on their own standardized virtual machine (donated to the
Challenge by Google) and submitted their trained models to the Synapse computational
platform (23) as an R binary object (24) and rerunnable source code, where they were
immediately evaluated. The predictive value of each model was scored by calculating the
concordance index (CI) of predicted death risk compared to OS in a held-out data set, and
the CIs were posted on a real-time leaderboard (http://leaderboards.bcc.sagebase.org). The
CI is a standard performance measure in survival analysis that quantifies the quality of
ranking risk predictors with respect to survival (25). In essence, given two randomly drawn
patients, the CI represents the probability that a model will correctly predict which of the
two patients will experience an event before the other (for example, a CI of 0.75 for a model
means that if two patients are randomly drawn, the model will order their survival correctly
three of four times).

Throughout the 3-month orientation and training phases of the Challenge (phases 1 and 2,
respectively), participants collectively submitted more than 1400 predictive models, 1400 of
which successfully executed from the submitted binary object and were assigned CI scores
in the test data set (Fig. 1). One unique characteristic of this Challenge with respect to
previous biomedical research Challenges was that each participant’s source code was
available for others to view and adapt in new models. At the end of the training phase,
participants were given the opportunity to train five models each on all 1981 METABRIC
samples. The overall Challenge was determined in the final phase (phase 3) by assessing up
to five models per participant or team (see table S3 for a listing of those members of the
Breast Cancer Challenge Consortium who submitted at least one model to phase 3 and
requested to have their name and affiliation listed) against a newly generated breast cancer
data set consisting of genomic and clinical data from 184 women diagnosed with breast
cancer (the “OsloVal” data set) (see Materials and Methods for details on how to access the
METABRIC and OsloVal data sets). The participant or team with the best-performing
model in the new data set was invited to publish an article about the winning model in
Science Translational Medicine, provided it exceeded the scores of preestablished
benchmark models, including the first-generation 70-gene risk predictor (4, 7) and the best
model developed by a group of expert researchers in a precompetition (26). This pioneering
mechanism of Challenge-assisted peer review assessed performance metrics in a blinded
validation test, and these results were the foremost criterion for publication in the journal.

The METABRIC and the OsloVal data sets were comparable in terms of their clinical
characteristics (Table 1). Roughly three-quarters of the patients were estrogen receptor–
positive (ER+), and about half were lymph node–negative (LN−). The patients from the
METABRIC and OsloVal cohorts received combinations of hormonal, radio-, and
chemotherapy, and none were treated with more modern drugs such as trastuzumab, which
specifically targets the human epidermal growth factor receptor 2/neu (HER2/neu) receptor
pathway (27).
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In phase 2 of the Challenge, participants trained on 1000 samples and obtained real-time
feedback on model scores (CIs) in a held-out 500-sample test set (phase 1 results are
displayed on the original leader-board and are not discussed here). A reference model using
a random survival forest (28) trained on the clinical covariates and genomic data was
provided as a baseline. Models submitted by Challenge participants quickly exceeded the
performance of this baseline model and steadily improved over time (Fig. 2A), although we
note that the improvement was modest compared to the baseline model (Fig. 2A, inset).

At the end of phase 2, all models in the leaderboard were evaluated against 481 hidden
validation samples from the METABRIC data set. Given that more than 1400 models were
submitted, there was concern that improvement in model scores resulted from overfitting to
the test set used to provide real-time feedback. However, the performance of most models in
the new test set was consistent with the performance of the same models in the previous test
set, with comparable score ranges (Fig. 2, B and C;Pearson correlation: 0.90).A similar
outcome was observed for the five models from every team that were evaluated against the
OsloVal data set, after being trained on the 1981 samples in the METABRIC data set.
Again, there was little evidence of overfitting when compared to the previous METABRIC
test scores (Fig. 2D; Pearson correlation: 0.59), especially for models ranked in the top
quantile.

After participants trained and selected their final models, and after eliminating the ones that
could not be evaluated because of run time errors, a total of 83 models were assessed and
scored against the newly generated OsloVal data set. The winning team had three similar
models that performed consistently better than all other scored models. The robustness of
the final ranking was evaluated by sampling, without replacement, 80% of the validation set
100 times. Figure 3 shows box plots of the rankings obtained by each model across all trials
ordered by the initial scores on all 184 OsloVal samples. The top three models belong to the
same team and are ranked significantly better than the rest. The top model achieved a CI of
0.7561 [P = 5.1 × 10−28 compared to the fourth-ranked model, by Wilcoxon rank-sum test
(29)].

The BCC top-scoring model also significantly outperformed the top model developed during
a pilot precompetition phase (26) in which BCC organizers tested 60 different models based
on state-of-the-art machine learning approaches and clinical feature selection strategies. The
best model from the precompetition used a random survival forest trained on the clinical
feature data in addition to a genomic instability index derived from the copy number data.

The top-scoring model from the precompetition would have ranked as the sixth best model
in the Challenge and achieved a CI of 0.7408 (Wilcoxon paired test, P = 4.33 × 10−1

compared to the winning model from the Challenge) when trained on the full METABRIC
data set and evaluated in the OsloVal data. For comparison, a research version of a 70-gene
risk signature (4) was also evaluated in the OsloVal cohort and achieved a CI of 0.60. In
addition, two more test models were developed that included only the clinical covariates
available for the two data sets (listed in tables S1 and S2). The first model was based on
boosted regression (30) and achieved a CI of 0.7001 on the validation data set, whereas the
second model used random forest regression (28) and achieved a score of 0.6964. The
winning Challenge model achieved a score of 0.7562, significantly higher than the two
clinical-only models (Wilcoxon paired test, P = 6.1 × 10−3 for both).

Meta-analyses of predictions submitted to past DREAM Challenges have systematically
demonstrated (31–34) that the ensemble predictions resulting from the aggregation of the
predictions of some or all the models usually perform similarly or even better than the best
model. This phenomenon has been called the “wisdom of the crowds” and highlights one of
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the advantages of enabling research communities to work collaboratively to analyze the
same data sets. The wisdom of the crowds was also at play in BCC (Fig. 4). For both
cohorts, participants’ predictions were aggregated by calculating a community prediction
formed by taking the average predicted rank of each patient across top n models for n = 1 …
83 (Fig. 4, A and B). Even when adding very poor predictions to the aggregate, the resulting
score was robust and comparable with the top models. Robust predictors were also achieved
by constructing community scores based on random subsamples of models (Fig. 4, C and
D).

We evaluated model performance to determine whether there were specific clinical cases
that are inherently more difficult to predict in terms of prognosis. We conducted analysis of
variance (ANOVA) analyses by separating the patients from the OsloVal cohort based on
the following clinical variables: age (≤50 years versus >50 years), tumor size (≤2 cm versus
>2 cm), tumor grade (grades 1, 2, and 3), LN status (LN−, 1 to 3 positive LNs, 4 to 9
positive LNs, >9 positive LNs), ER status (ER+ versus ER−), progesterone receptor status
(PR+ versus PR−), HER2/neu receptor amplification status (HER2+, HER2−), and OS (<5
years, 5 to 10 years, or >10 years). Of all variables considered (Fig. 5), tumor grade, LN
status, OS, age, and tumor size were significantly associated with model performance (F test
P values: 1.7 × 10−36, 1.1 × 10−38, 8.0 × 10−26, 9.0 × 10−7, and 5.0 × 10−5, respectively).

Breast cancer patients with high-grade tumors and large numbers of positive LNs (>9) were
associated with low CI scores (Fig. 5, B and C) and explain more than 40% of CI variance
(Fig. 5A), suggesting that the OS of breast cancer patients with aggressive tumors is harder
to predict. By contrast, there was no significant association between model performance and
ER, PR, or HER2 status (Fig. 5E).

DISCUSSION
The BCC was an exercise in crowdsourcing that constitutes an open distributed approach to
develop predictive models with the future potential to advance precision medicine
applications. By creating a large, standardized breast cancer genotypic and phenotypic
resource readily accessible via Web services and a common cloud computing environment,
we were able to explore whether the open sharing of predictors of disease within a
Challenge environment encourages the sharing of models and ideas before publication and
whether decoupling of data creation, data analysis, and evaluation would minimize
analytical and self-assessment biases.

Scientific conclusions from the Challenge
Improved model performance—The BCC results show that the best-performing model
achieved significant CI improvements over currently available best-in-class methodologies,
including the best model developed by a group of experts in a precompetition and a 70-gene
risk signature. We note that the first-generation 70-gene risk signature used for comparison
was designed as a binary risk stratifier for a specific patient subpopulation and should be
viewed as a baseline and sanity check rather than a direct comparison. More significantly,
the best-performing model (as well as slight variants of the same model submitted by the
same BCC team) consistently outperformed all other approaches in three independent
rounds of assessment and across multiple data sets. The top-scoring models used a
methodology that minimized overfitting to the METABRIC training set by defining a
“Metagene” feature space based on robust gene expression patterns observed in multiple
external cancer data sets (35).

Robustness and generalizability of model performance—Our post hoc analysis
suggests that the potential for training models overfit to the test set was not a significant
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confounding factor, even when participants were allowed to submit an unlimited number of
models and obtain real-time scores for each submission. Comparison of the same models
across multiple rounds of evaluation suggests a surprising degree of consistency between the
unlimited submission phase and independent evaluations in the held-out METABRIC data
and newly generated OsloVal data. This is especially remarkable because the OsloVal
samples were collected from a different geographical location, by a different team, at a
different time, and for a different purpose—in contrast to studies such as MAQC-II (36), in
which the test sets and training sets were collected and processed by the same team and
organization.

The distribution of CI scores improved with each round of evaluation, and the highest-
scoring models in the OsloVal evaluation achieved higher CI scores than any of the 1400
models evaluated in either of the METABRIC phases. This apparent counterintuitive result
can likely be explained by the fact that the average follow-up time for the OsloVal cohort is
4541 days, much longer than the average follow-up time of 2951 days for METABRIC. The
rate of censored events is also lower in OsloVal (27.7%) than in METABRIC (55.2%);
therefore, the proportion of long-term survivors scored in OsloVal is larger than that in the
METABRIC validation set. Because the long-time survivors are better predicted (Fig. 5D)
than the short-term survivors, the CIs associated with the METABRIC data are biased to
shorter-time survivors and lower CIs.

The consistency of model scores across our three evaluations does not conclusively rule out
some degree of overfitting, and, as with any scientific study, the generality of our findings
will be continuously refined through sustained scrutiny in subsequent studies throughout the
research community. However, the consistency of model performance across independent
evaluations provides strong initial evidence that the findings of our study are likely to
generalize to unseen data.

Robust performance of community models—Consistent with results of previous
DREAM Challenges (31–34), the current study suggests that community models,
constructed by aggregating predictions across many models submitted by participants,
achieve performance on par with the highest-scoring individual models, and this high
performance is remarkably robust to the inclusion of many low-scoring models into the
ensemble. This result suggests that crowdsourcing a biomedical prediction question as a
Challenge and using the community prediction as a solution is a fast and sound strategy to
attain a model with strong performance and robustness. Intuitively, such an approach
leverages the best ideas from many minds working on the same problem. More specifically,
different approaches that accurately model biologically relevant signals are likely to
converge on similar predictions related to the true underlying biology, whereas errant
predictions resulting from erroneous approaches are less likely to be consistent. Thus,
ensemble models may amplify the true signals that remain consistent across multiple
approaches while decreasing the effects of less-correlated errant signals.

Contributions of BCC to the community
Challenge design—In designing BCC to incentivize crowdsourced solutions that might
improve breast cancer prognostic signatures, our aims included continuous participant
engagement throughout the Challenge, computational transparency, and rewarding of model
generalizability. To accomplish these aims, respectively, we provided a framework that
allowed users to make submissions and obtain realtime feedback on their performance,
required submission of source code with each model, and provided multiple rounds of
evaluation in independent data sets.
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A common framework for comparing and sharing models—The model evaluation
framework and CI scores calculated for models submitted during the Challenge provide a
baseline set of model scores against which emerging tests, such as the PAM50 (37) risk of
recurrence score and future prognostic models, may be compared.

The requirement for submission of publicly available source code provided an additional
level of transparency compared to the typical Challenge design, which requires users to
submit a prediction vector output from their training algorithm. We envision that sharing
source code from multiple related predictive modeling Challenges will give rise to a
community-developed resource of predictive models that is extended and applied across
multiple projects and that might facilitate cumulative scientific progress, in which
subsequent innovations build off of previous ones. It was encouraging to discover that
participants learned from both well-performing and poorer-performing models. For example,
the top-performing team consistently used the discussion forum to share with the other
teams the prognostic ability of their Metagene features. Some of the other teams used
aspects of the best-performing team’s code to improve their submissions, which in turn gave
feedback to the best-performing team on the use of their methods by the other challenge
participants.

Innovations from the community—Through the transparent code submission system
and communication tools, such as a community discussion forum, the Challenge resulted in
numerous examples of sharing and borrowing of scientific and technical insights between
participants. At one point, we tested whether a cash incentive could be used to promote
collaborative model improvement and offered a $500 incentive to any participant who could
place atop the leader-board by borrowing code submitted by another participant (in addition
to $500 to the participant whose code was borrowed). In less than 24 hours, a participant
achieved the highest-scoring model by combining the computational approaches of the
previously highest-scoring model with his clinical insight of modeling LN status as a
continuous, rather than binary, variable. Unanticipated innovations also emerged organically
from the community, including an online game within a game (http://genegames.org/cure),
in which a player and a computer avatar successively select genes as input features to a
predictive model, until one model is deemed statistically significantly superior to the other
in predicting survival in the held-out data sets. This game attracted 120 players within 1
week, who played more than 2000 hands.

Limitations and extensions for future Challenges
The design of BCC included a number of simplifying assumptions intended to define a
tractable prediction problem and evaluation criterion. However, it would be beneficial to
account for biological and analytical complexities that were obscured by simplifications
made in our experimental design.

First, we evaluated all models on the basis of a single metric, CI, which represents the most
widely used statistic for evaluating survival models. However, a more complete assessment
of advantages and disadvantages of each model would include additional criteria, such as
model run time, trade-offs between sensitivity and specificity, or metrics more closely tied
to the clinical relevance of a prognosticator.

Second, our choice to evaluate survival predictions across all samples in the cohort may
obscure identification of models with advantages in particular breast cancer subtypes.

Third, by providing participants with normalized data, we tested only for modeling
innovations given predefined input data, but did not assess different methods for data quality
control and standardization that could contribute substantially to model improvements. A
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useful future Challenge design may allow participants to submit alternative methods for
preprocessing raw data.

Fourth, we chose to evaluate models on the basis of OS. Other clinical endpoints, such as
progression-free survival, are not currently available in the data sets used in BCC but may
represent better evaluation endpoints if made available in the future. We chose OS over the
other clinical endpoint available in the data set, disease-specific (DS) survival, to be
consistent with decisions (38) by regulatory agencies such as the U.S. Food and Drug
Administration and the European Medicines Agency. However, because of informal
feedback we received from participants—that use of DS survival yielded more accurate
models—we reevaluated all models and supported a separate exploratory leaderboard based
on this metric. The model performance on this leaderboard suggested that using DS rather
than OS as the clinical endpoint yielded improved CI scores, increased correlation with
molecular features, and decreased correlation with confounding variables such as age.
However, the best-performing models were consistent across both metrics.

Fifth, although prognostic models are one translational question, future Challenges that
focus more directly on inferring predictive models of response to therapy may more directly
affect clinical decision making. A laudable goal for future Challenges would be to directly
engage the patient community and provide means to submit their own samples, help define
questions, work alongside Challenge participants, and provide more direct feedback on how
Challenge results can yield insights able to translate to improved patient care. In addition,
providing large high-quality data sets (often prepublication) to a “crowd” of analysts is not
common practice in academia and industry. However, such contributions by data generators
would provide the necessary substrate for running such Challenges, with a potentially high
impact on biomedical discovery.

Sixth, although statistically significant, the BCC results show that the improvement of the
best-performing model is moderate with respect to the score achieved by aggregating
standard clinical information. Thus, whereas molecular prognostic models derived from
BCC warrant further investigation into their clinical utility, our results also suggest a new
benchmark for future predictive methods derived from incorporating clinical covariates into
state-of-the-art ensemble methods such as boosting or random forests. Future Challenges
also may investigate the use of additional types of genomic information.

Finally, the sharing of ideas enabled by requiring submissions as rerunnable source code
may ironically inhibit the diversity of innovations, effectively encouraging a monoculture as
the community converges on a local optimum, modifying and extending approaches with
high performance in the early stages of feedback (39). Improvements for future Challenges
may include short embargo periods before sharing source code, with release possibly
associated with declaring winners in stages of sub-Challenges with slightly modified data or
prediction criteria. In addition, future Challenges that promote code sharing should establish
well-defined criteria for assigning proper attribution (for example, in publication of winning
models resulting from the Challenge) to all participants who made material intellectual
contributions that were incorporated into the final winning model. More generally, it is
important to develop a reward system that favors collaborative research practices that
balance the currently prevalent winner-takes-all reward system.

Our results reinforce the trend from efforts such as CASP, DREAM, and others that
Challenges incentivize collaboration and rapid learning, create iterative solutions in which
one Challenge may feed into follow-up Challenges, motivate the generation of new data to
answer clinically relevant questions, and provide the means for objective criteria to prioritize
approaches likely to translate basic research into improved benefit to patients. We envision

Margolin et al. Page 9

Sci Transl Med. Author manuscript; available in PMC 2014 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that expanding such mechanisms to facilitate broad participation from the scientific
community in solving impactful biomedical problems and assessing molecular predictors of
disease phenotypes could be integral to building a transparent, extensible resource at the
heart of precision medicine.

MATERIALS AND METHODS
Challenge timeline

The BCC comprised three phases spanning a period of 3 months: (i) an orientation phase,
(ii) a training phase, and (iii) a validation phase.

In phase 1, participants were provided mRNA and copy number aberration (CNA) data from
997 samples from METABRIC alongside the clinical data to train predictive models of
patient OS. Samples contained in this training set corresponded to those used as a training
set in the original publication of the METABRIC data set (22). During this phase of the
Challenge (17 July to 22 September 2012), models were evaluated in real time against a
held-out data set of 500 METABRIC samples, and a leaderboard was developed to display
CI scores for each model, based on predicted versus observed survival times in these 500
held-out samples.

In phase 2 (25 September to 15 October 2012), lessons learned from the previous phase
were implemented: The clinical variable “LN status” was changed from binary (positive or
negative) values to integer values, representing the number of affected LNs; the gene
expression and CNA data were renormalized (as described below) to better correct for batch
effects; and the full cohort was randomly split into a new training and a new testing set to
correct for sample biases from the original split (for example, in the original split, nearly all
missing clinical covariates were in the test set). During this phase, models were trained on a
training set of 1000 samples and evaluated in real time against a held-out test data set of 500
samples. The resulting scores were posted on a new leaderboard and, at the end of phase 2,
were evaluated against the remaining held-out 481 samples. The winner of this phase was
determined on the basis of evaluation in this second test set. All official scoring was
performed using the OS endpoint, although based on requests from Challenge participants,
we also configured a leaderboard that allowed participants to assess their model scores
against DS survival as a secondary “unofficial” evaluation.

Before submission of their final models in phase 3, participants were given the opportunity
to retrain their models on the entire METABRIC data set of 1981 (for convenience, with
clinical variables reduced to only those present in the OsloVal data set). Furthermore,
participants were asked to select a maximum of five models per team for assessment against
the OsloVal data set. All participants who submitted a model in phase 3 are listed in table
S3. If a team did not choose their preferred five models, their five top-scoring models were
selected by default. These models were scored on the basis of the CI predicted versus
observed ranks of survival times in the OsloVal data set. The overall winner of the
Challenge was determined by the top CI score in OsloVal. The significance of the top-
scoring models compared to the rest was assessed on the basis of scores for multiple random
subsamples without replacement of 80% of patients from the OsloVal cohort. This process
was repeated 100 times, and the resulting rankings were compared with a Wilcoxon rank-
sum test (29).

Data governance
The data generators’ institutional ethics committee approved use of the clinical data within
the BCC. Expression and copy number data from METABRIC were made available to
Challenge participants during the duration of phases 1 to 3. Data for clinical covariates from
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the METABRIC cohort had been made public previously (40). Each participant who
accessed the data agreed to (i) use these data only for the purposes of participating in the
Challenge and (ii) not redistribute the data. Data access permissions were revoked at the
completion of each BCC phase, and participants were required to reaffirm their agreement to
these terms to enter each phase.

The METABRIC and OsloVal data sets have been deposited in the Synapse database
(https://synapse.prod.sagebase.org/#!Synapse:syn1710250) and will be available to readers
for a 6-month “validation phase” of the BCC. Those interested in accessing these data for
use in independent research are directed to the following links. Expression and CNA data
from OsloVal are available through an open access mechanism. All of other data are
available through a controlled access mechanism.

METABRIC: https://synapse.prod.sagebase.org/#!Synapse:syn1688369

OsloVal: https://synapse.prod.sagebase.org/#!Synapse:syn1688370

The final Challenge scoring was based on the CIs of models, which was the same metric
used in the leaderboard at earlier phases of the Challenge. The CI was predefined from the
beginning of the Challenge as the performance metric to be used at final scoring. For all
final submissions, every effort was made by the Sage Bionetwork team to run the submitted
code in the Synapse platform. However, because of different problems in the submitted
code, some of the submissions did not run successfully. Each submitted model that could be
successfully run yielded a final survival prediction for the OsloVal cohort. For each of these
predictions, the CI was mathematically computed in an unambiguous way by a computer
program, from which the performance ranking was generated in order of descending CI. All
final models can be accessed at http://leaderboards.bcc.sagebase.org/final/index.html.

Data normalization
The Affymetrix Genome-Wide Human SNP 6.0 and Illumina HT12 Bead Chip data were
normalized according to the supervised normalization of microarrays (snm) framework and
Bioconductor package (41, 42). Following this framework, models were devised for each
data set that expressed the raw data as functions of biological and adjustment variables. The
models were built and implemented through an iterative process designed to learn the
identity of important variables defined by latent factors identified via singular value
decomposition. Once these variables were identified, we used the snm R package to remove
the effects of the adjustment variables while controlling for the effects of the biological
variables of interest.

For example, to normalize the METABRIC mRNA data, we used a model that included ER
status as a biological variable and both scan date and intensity-dependent array effects as
adjustment variables. The resulting normalized data consisted of the residuals from this
model fit plus the estimated effects of ER status. For the relevant data sets, we list the
biological and adjustment variables as follows: METABRIC mRNA: biological variable =
ER status, adjustment variables = scan date and intensity-dependent array effects;
METABRIC SNP: biological variable = none, adjustment variables = scan date and
intensity-dependent array effects; OsloVal mRNA: biological variable = ER status,
adjustment variables = Sentrix ID (43), intensity-dependent array effects; OsloVal SNP:
biological variable = none, adjustment variables = scan date, intensity-dependent effects.

Summarization of probes to genes for the SNP6.0 copy number data was done as follows.
First, probes were mapped to genes with information obtained from the pd.genomewidesnp.
6 Bioconductor package (44). For genes measured by two probes, we defined the gene-level

Margolin et al. Page 11

Sci Transl Med. Author manuscript; available in PMC 2014 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://synapse.prod.sagebase.org/#!Synapse:syn1710250
https://synapse.prod.sagebase.org/#!Synapse:syn1688369
https://synapse.prod.sagebase.org/#!Synapse:syn1688370
http://leaderboards.bcc.sagebase.org/final/index.html


values as an unweighted average of the data from the two probes. For genes measured by a
single probe, we defined the gene-level values as the data for the corresponding probe. For
those measured by more than two probes, we devised an approach that weighted probes
based on their similarity to the first eigengene as defined by taking a singular value
decomposition of the probe-level data for each gene. The percent variance explained by the
first eigengene was then calculated for each probe. The summarized values for each gene
were then defined as the weighted mean, with the weights corresponding to the percent
variance explained.

Compute resources
A total of 2000 computational cores in the Google Cloud were provided to participants for
the ~5-month duration of the Challenge, corresponding to a maximum of 7.5 million core
hours if used at capacity. Specifically, each participant was provisioned an 8-core, 16-GB
RAM machine, preconfigured and tested with an R computing environment and required
libraries used in the Challenge. Compute resources were provisioned to each participant for
dedicated use throughout the Challenge, and once capacity was reached, resources assigned
to inactive users were recycled to new registrants such that all active users were provisioned
compute resources. Users were also allowed to work on their own computing resources.

OsloVal data generation
The OsloVal cohort consisted of fresh-frozen primary tumors from 184 breast cancer
patients collected from 1981 to 1999 (148 from 1981 to 1989 and 36 from 1994 to 1999) at
the Norwegian Radium Hospital. Tumor material collection, clinical characterization, and
DNA and mRNA extraction methods are described in the Supplementary Materials and
Methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Timeline and phases of BCC
At initiation (phase 1), a subset of the METABRIC data set was provided along with
orientation on how to use the Synapse platform for accessing data and submitting models
and source code. Phase 2 provided a new randomization of samples, to eliminate biases in
the distribution of clinical variables across training and test data, and renormalization of
METABRIC mRNA expression and DNA copy number data, to reduce batch effects and
harmonize data with the OsloVal data used in phase 3. During phase 2, there was a live
“pre–15 October 2012” leaderboard that provided real-time scores for each submission
against the held-out test set of 500 samples. At the conclusion of phase 2 on 15 October
2012, all models in the leaderboard were tested against the remaining held-out 481 samples.
In the final validation round (phase 3), participants were invited to retrain up to five models
on the entire METABRIC data set. Each model was then assigned a final CI score and
consequently a rank based on the model’s performance against the independent OsloVal test
set.
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Fig. 2. BCC through time
(A) During phase 2, the highest-scoring model scores were recorded for each date until the
leaderboard was closed. Each colored segment represents a top-scoring team at any given
point for the period extending from late September 2012 until the final deadline of phase 2
(15 October 2012). The plot records only the times when there was an increase in the best
score, whereas the teams that achieved this score are labeled with different colors. The
sequence of colors highlights an important aspect of the real-time feedback, where teams
were encouraged to improve their models after being bested on the leaderboard by another
team. Inset, the same plot with a y-axis scale ranging from of 0.5 to 1.0 maximum CI. (B)
Probability density function plots of model scores posted on the live pre–15 October
leaderboard evaluated against (i) the first test set of 500 samples (blue), (ii) the second test
set of 481 samples (yellow), and (iii) the OsloVal data set (red). The null hypothesis
probability density, which corresponds to random predictions evaluated against the OsloVal
data set, is shown in purple. (C) Scatter plot of pre–15 October 2012 model performance
versus 15 October 2012 performance. Colors represent quantiles, meaning that the ordered
data are divided into four equal groups numbered consecutively from the bottom-scoring
models (1) to the top-scoring models (4) for pre–15 October model performance. (D) Scatter
plot of pre–15 October 2012 model performance versus final OsloVal performance. Colors
represent quantiles of pre–15 October model performance. Asterisk represents the highest-
scoring submitted model.
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Fig. 3. Rank stability of final models
The OsloVal test data were randomly subsampled 100 times using 80% of the samples.
Model rank was recalculated at each iteration. Models are ordered by their final posted
leaderboard score (P values for the top three models, which were submitted by the same
team, versus the fourth place model were as follows = 5.1 × 10−28, 1.8 × 10−22, and 1.7 ×
10−20 by Wilcoxon rank-sum tests). With these box plots, the middle horizontal line
represents the median, the upper whisker extends to the highest value within a 1.5× distance
between the first and third quantiles, and the lower whisker extends to the lowest value
within a 1.5× distance. Data beyond the ends of the whiskers are outliers plotted as points.
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Fig. 4. Individual and community scores for METABRIC and OsloVal
(A) Individual model scores are ordered by their rank on the pre–15 October 2012
METABRIC leaderboard (red line). For each model rank (displayed on the x axis), the blue
line plots the aggregate model score based on combining all models less than or equal to the
given rank. (B) Individual and aggregate model scores based on evaluation in the OsloVal
data set. (C) Individual model scores (that is, community = 1) from the pre–15 October 2012
METABRIC leaderboard (http://leaderboards.bcc.sagebase.org/pre_oct15/index.html) are
plotted alongside the community aggregate scores obtained when 5, 10, 20, and 50 randomly
chosen models were considered. (D) Individual model scores (that is, community = 1) from
the final OsloVal leaderboard (http://leaderboards.bcc.sagebase.org/final/index.html) are
plotted alongside the community aggregate scores obtained when 5, 10, 20, and 50 randomly
chosen predictions were considered. The colors correspond to community size: red = 1,
yellow = 5, green = 10, blue = 20, purple = 50.
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Fig. 5. Model performance and clinical characteristics
(A) Percentage of CI variance explained by each clinical variable. (B) CIs were calculated
for OsloVal models according to subsets of patients by histological grade. (C) CIs were
calculated for OsloVal models according to subsets of patients by LN status. (D) CIs were
calculated for OsloVal models according to subsets of patients by follow-up time (OS). (E)
CIs were calculated for OsloVal models according to subsets of patients by age, ER status,
and HER2 status. Patients were divided into subsets according to each of the above clinical
characteristics. Individual model predictions were generated for patients belonging to each
subset, and the CI was calculated by comparison with the actual survival for each patient.
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Table 1

Clinical characteristics of METABRIC and OsloVal data sets.

Categories METABRIC OsloVal

Cohort size 1981 184

Age, years (%)

  ≤50 21.4 33.1

  50–60 22.5 18.5

  ≥60 56.1 48.4

Tumor size, cm (%)

  ≤2 43.3 38.0

  2–5 48.2 42.4

  ≥5 7.5 7.1

  NA 1.0 12.5

Node status (%)

  Node negative 52.3 49.5

  1–3 nodes 31.4 21.2

  4–9 nodes 11.4 9.8

  ≥10 nodes 4.6 8.2

  NA 0.3 11.3

ER status (%)

  ER+ 76.3 60.9

  ER− 23.7 39.1

PR status (%)

  PR+ 52.7 21.2

  PR− 47.3 78.8

HER2 copy status (%)

  HER2 amplification 22.1 13.6

  HER2 neutral 72.6 86.4

  HER2 loss 5.0 0.0

  NA 0.3 0.0

Tumor grade (%)

  1 8.6 6.5

  2 39.1 37.0

  3 48.1 30.4

  NA 4.2 26.1

NA, not available.
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