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Breast cancer is a group of heterogeneous diseases that

show substantial variation in their molecular and clinical

characteristics. This heterogeneity poses significant chal-

lenges not only in breast cancer management, but also in

studying the biology of the disease. Recently, rapid

progress has been made in understanding the genomic

diversity of breast cancer. These advances led to the

characterisation of a new genome-driven integrated

classification of breast cancer, which substantially refines

the existing classification systems currently used. The

novel classification integrates molecular information on

the genomic and transcriptomic landscapes of breast

cancer to define 10 integrative clusters, each associated

with distinct clinical outcomes and providing new insights

into the underlying biology and potential molecular

drivers. These findings have profound implications both

for the individualisation of treatment approaches, bring-

ing us a step closer to the realisation of personalised

cancer management in breast cancer, but also provide a

new framework for studying the underlying biology of

each novel subtype.

The EMBO Journal (2013) 32, 617–628. doi:10.1038/

emboj.2013.19; Published online 8 February 2013
Subject Categories: molecular biology of disease;
genomic & computational biology
Keywords: breast cancer; classification; genomic

Introduction

Breast cancer remains one of the leading causes of cancer

death in women, despite significant improvements in survi-

val over the past 25 years. One of the greatest challenges

faced by clinicians and researchers in this field is that breast

cancer is not a single entity, but rather a heterogeneous group

of several subtypes displaying distinct differences in biologi-

cal and clinical behaviour. A primary aim in cancer manage-

ment is to tailor clinical decisions to the individual, based on

a detailed understanding of the molecular profile of the

tumour and the likely clinical outcome of the individual’s

disease. This progress will facilitate personalised treatment

approaches that are more targeted, have superior efficacy and

are associated with less toxicity. Our increased knowledge of

the genomic aberrations underlying human breast cancers,

and the molecular processes that are disrupted, are key to

understanding the diversity of the disease and achieving the

aims of personalised medicine. Over the past decade, the

development of high-throughput technologies to study genet-

ic, epigenetic and proteomic changes has allowed for rapid

progress in our understanding of the complexity of breast

cancer biology. Here, we review recent advances that have

led to the integration of information on the genomic and

transcriptomic landscapes of breast cancers to refine the

molecular classification of the disease.

Current histopathological classification
of breast cancer

The classification of invasive breast cancer currently involves

the assessment of histological criteria encompassing

both morphology-based and immunohistochemical (IHC)

analyses. Traditional pathological parameters such as histo-

logical type, tumour size, histological grade and axillary

lymph-node involvement have been shown to correlate

with clinical outcome and provide the basis for prognostic

evaluation (Elston et al, 1999). IHC markers such as

the expression of hormone receptors (oestrogen (ER) and

progesterone receptors (PR)) and the overexpression and/or

amplification of the human epidermal growth factor receptor

2 (HER2) provide additional therapeutic predictive value and

are of key importance in guiding treatment selection (Harris

et al, 2007).

Histopathological subtypes and tumour grade

The vast majority of breast carcinomas (B70–80%) are

described as invasive ductal carcinomas not otherwise

specified (IDC-NOS) based on architectural patterns and

cytological features (Ellis, 2003). In contrast, around 25%

of breast cancers are characterised according to ‘histological

special types’ such as lobular, tubular, medullary and
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metaplastic carcinomas (Ellis, 2003). At the molecular level,

each histological special type appears to be more

homogenous than IDC-NOS and is likely to be driven by

key underlying molecular mechanisms (Weigelt et al, 2008).

However, the majority of the special types are rare and to

date, this has limited their analysis in large-scale molecular

studies. In addition to histological tumour type, tumour grade

is the other important intrinsic tumour characteristic that can

be assessed by histopathological analysis. Tumour grade is an

assessment of differentiation (tubule formation and nuclear

pleomorphism) and proliferative activity (mitotic index),

allowing tumours to be further stratified and providing key

prognostic information (Rakha et al, 2010).

ER, PR and HER2

In conjunction with histopathological assessment, the stan-

dard evaluation of breast cancer for clinical purposes

involves IHC characterisation of ER, PR and HER2 status.

Hormone receptor-positive breast cancers account for around

75–80% of all cases and standardised IHC assays for the

routine testing of ER and PR are used to guide the selection of

patients for hormonal-based therapies. HER2 represents the

only additional predictive marker currently in routine use.

Approximately 10–15% of breast cancers have HER2 over-

expression and/or amplification with around half of these

co-expressing hormone receptors (Konecny et al, 2003).

These patients are selected for anti-HER2 based therapies,

including the humanised monoclonal HER2 antibody,

trastuzumab, which targets the extracellular domain of the

HER2 receptor. The remaining 10–15% of breast cancers are

defined by hormone receptor and HER2 negativity (i.e., triple

negative cancers), which represent a key clinical entity given

their lack of therapeutic options (Dawson et al, 2009).

While the current classification of human breast tumours

has been fundamental for prognostic and predictive evalua-

tion, there remain a number of important limitations. First,

considerable variation in response to therapy and clinical

outcome still exists, even for tumours with apparent simila-

rities in clinical and pathological characteristics. Second, this

classification continues to provide limited insight into the

complex underlying biology and the molecular pathways

driving the disease in different subtypes.

Molecular classification of breast cancer

Gene expression profiling and the identification of

intrinsic subtypes

Expression analysis using microarray-based technology has

provided researchers with an opportunity to begin moving

towards comprehensive molecular profiling of breast cancer.

These efforts have resulted in the identification of clinically

relevant molecular subtypes, and have provided early in-

sights into the molecular heterogeneity of the disease

(Perou et al, 2000; Sorlie et al, 2001, 2003; Hu et al, 2006).

Five distinct intrinsic subtypes have been identified based

solely on gene expression: luminal A, luminal B, HER2

overexpressing, basal-like and normal breast tissue-like.

Differences in gene expression patterns reflect basic

alterations in the cell biology of the tumours and

importantly are associated with significant variation in

clinical outcome (Sorlie et al, 2003). The prognosis of

patients with ER-positive disease is largely determined by

the expression of genes related to proliferation (Hu et al,

2006). More recently, the intrinsic classification has been

refined in a PAM50 assay based on the expression of 50

genes designed to classify single samples into each of the five

intrinsic subtypes (Parker et al, 2009; Nielsen et al, 2010).

Following the initial identification of the intrinsic molecu-

lar subtypes, gene expression studies have evolved and

further sub-classification of breast cancers into new molecu-

lar entities have been proposed. For example, a detailed

analysis of genes differentially expressed in ER-negative

tumours has demonstrated that basal breast cancers are a

heterogeneous group with at least four main subtypes

(Teschendorff et al, 2007). Furthermore, this analysis

revealed an immune response gene expression module,

which identifies a good prognosis subtype in ER-negative

disease. Other recent studies have also identified a new

breast cancer intrinsic subtype known as Claudin-low or

mesenchymal-like (Prat et al, 2010). This subtype is

characteristically negative for ER, PR and HER2 and carries

an intermediate prognosis between basal and luminal

subtypes. Importantly, Claudin-low/mesenchymal tumours

appear to be enriched with cells showing distinct biological

properties associated with mammary stem cells and tumour

initiating potential (Hennessy et al, 2009; Lim et al, 2009;

Lehmann et al, 2011; Bruna et al, 2012).

In parallel with the identification of the intrinsic subtypes,

gene expression profiling has also been used by several

groups to identify distinct prognostic signatures (van de

Vijver et al, 2002; van’t Veer et al, 2002; Paik et al, 2004).

Two of these signatures, Mammaprint (a microarray-based

assay of the Amsterdam 70-gene breast cancer signature) and

OncotypeDX (a PCR-based assay of a panel of 21 genes) have

been approved for clinical use and are now being tested in

randomised clinical trials (Cardoso et al, 2008; Sparano and

Paik, 2008).

Subtypes defined through IHC markers

IHC can reproduce a similar molecular taxonomy of the

disease (Callagy et al, 2003; Abd El-Rehim et al, 2005;

Jacquemier et al, 2005; Blows et al, 2010). The largest IHC

study involving close to 12 000 samples (Blows et al, 2010)

showed that the luminal and non-luminal subtypes are

recognised primarily by the presence or absence of ER and

PR expression, respectively. These two groups can be further

separated on the basis of HER2 expression with luminal

HER2-positive tumours most closely resembling the luminal

B subtype and non-luminal HER2 expressing tumours

representing the HER2 molecular subtype. The triple

negative subtype is characteristically negative for ER, PR

and HER2 expression, but importantly, can also be divided

into two further subgroups based on the expression of basal

cytokeratins (such as CK5-6) and EGFR (epidermal growth

factor receptor) (Nielsen et al, 2004; Blows et al, 2010). The

six subtypes of breast cancer defined by this approach

demonstrate distinct differences in terms of breast cancer

survival (Blows et al, 2010). Furthermore, similarly to gene

expression profiling, the IHC expression of proliferation

markers such as Ki67 and Aurora A kinase is associated

with prognosis in ER-positive disease (Cheang et al, 2009;

Ali et al, 2012). In addition, BCL2 expression, as assessed by

IHC, is a powerful predictor of favourable prognosis in breast

cancer across different molecular subtypes (Dawson et al,
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2010). Despite these findings, the routine assessment of IHC

markers in addition to ER, PR and HER2 has not yet been

implemented into standard clinical treatment guidelines.

Integrating changes at the genomic level into

classification

The varied genomic landscape of breast carcinomas is not

fully captured using histopathological or transcriptomic

analysis. Distinct patterns of genomic rearrangements in

breast cancer have been characterised (Stephens et al,

2009) and molecular portraits of breast cancer can be

identified from studying the spectrum of copy number

alterations using array comparative genomic hybridisation

(aCGH) (Chin et al, 2007). For example, aCGH analysis has

identified a novel genomic subtype of ER-negative breast

cancer characterised by low genomic instability (Chin et al,

2007). Changes in gene expression patterns are influenced by

the underlying genomic architecture and some features

associated with the intrinsic subtypes have been defined by

copy number profiling (Chin et al, 2006; Ding et al, 2010).

Furthermore, measures of genomic complexity, such as the

complex arm aberration index (CAAI), have been shown to

provide important prognostic information in both ER-positive

and ER-negative diseases (Russnes et al, 2010).

The emergence of next-generation sequencing technologies

has now allowed the characterisation of the mutational land-

scape of the disease. These analyses have identified novel

cancer genes found to be recurrently mutated in breast cancer

(Shah et al, 2009, 2012; Banerji et al, 2012; Ellis et al, 2012;

Stephens et al, 2012; TCGA, 2012). Although mutations in

many of these genes are relatively infrequent, specific

patterns of somatic mutations can be grouped according to

their association with cellular pathways, underlying tumour

biology and distinct clinical phenotypes. Furthermore, these

studies have demonstrated the extent of heterogeneity across

breast cancer genomes and have allowed further exploration

into the role of intratumour heterogeneity (Shah et al, 2009,

2012; Nik-Zainal et al, 2012). The limitation of most of these

first generation sequencing studies is the relatively modest

number of samples analysed making it difficult to integrate

this information with other IHC-based or expression-based

classifiers.

Moving towards an integrated
classification: METABRIC

All breast carcinomas show significant genetic diversity due

to both inherited genetic variation and acquired genomic

aberrations (Table I). Inherited variants consist of single-

nucleotide polymorphisms (SNPs) and copy number variants

(CNVs) and these changes form the background germline

genetic landscape of the individual where a cancer might

develop. Somatic genomic changes, which include single-

nucleotide variants (mutations) and copy number aberrations

(CNAs) are acquired and contribute to the initiation and

progression of sporadic breast cancers. Genomic aberrations

can contribute to carcinogenesis by inducing abnormal gene

expression. Through the integrated analysis of both genomic

and transcriptomic data across large numbers of breast

cancers, the impact of genomic aberrations on the transcrip-

tome can be appreciated. We have recently used this ap-

proach to characterise the genomic and transcriptomic

architecture of 2000 breast tumours as part of METABRIC

(Molecular Taxonomy of Breast Cancer International

Consortium) (Curtis et al, 2012).

In this analysis, both germline variants (CNVs and SNPs)

and somatic aberrations (CNAs) were found to be associated

with alterations in gene expression. However, CNAs

accounted for the greatest variability in gene expression.

Somatic CNAs were shown to modify the expression of

genes located both in cis (nearby to the genomic aberration)

and trans (distant to the genomic aberration), but the effects

of cis-acting CNAs dominated. Clustering analysis of joint

copy number and gene expression data from the cis-asso-

ciated genes revealed 10 novel molecular subgroups

(Figure 1; Table II). The 10 integrative clusters (IntClust

1–10) were each associated with distinct CNAs and gene

expression changes (Figure 1). These clusters clearly demon-

strated the heterogeneity present within tumours classified

according to ER, PR and HER2 expression, and they divided

all of the previously identified intrinsic subtypes into separate

groups (Figure 2). Furthermore, the 10 groups were asso-

ciated with distinct clinical features and outcomes (Figure 3).

Here, we will provide an overview of each of the novel

subtypes, including an analysis of the distribution of muta-

tions in the TCGA data set (TCGA, 2012) (Figure 4), and

summarise the new insights gained from this classification

relating to the underlying biology and potential molecular

drivers in each group.

The ten integrative clusters

IntClust 1

Integrative cluster 1 is constituted by ER-positive tumours,

predominantly classified into the luminal B intrinsic subtype.

The subgroup typically has an intermediate prognosis, simi-

lar to that of IntClust 6 and 9 (Figure 3). All encompass a high

proportion of higher proliferation ERþ /luminal B tumours,

and are characterised by relatively high levels of genomic

instability (Figure 4). The defining molecular feature of

Table I Definition of genomic alterations

Genomic
alterations Definition Description

SNP Single-nucelotide polymorphism Germiline Inherited genetic variation in the DNA sequence that occurs when a single
nucleotide is altered

CNV Copy number variant Germline Inherited alteration of DNA that results in an abnormal number of copies
of one or more segments of DNA (1 kilobase or larger)

SNV Single-nucleotide variant Somatic Acquired genetic variation in the DNA sequence that occurs when a single
nucleotide is altered (i.e., point mutation)

CNA Copy number aberration Somatic Acquired alteration of DNA that results in an abnormal number of copies
of one or more segments of DNA (1 kilobase or larger)

Genome-driven integrated classification of breast cancer
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IntClust 1 is amplification of the 17q23 locus (Figure 1), a

region of amplification previously well described (Sinclair

et al, 2003; Parssinen et al, 2007). IntClust 1 also has

the highest prevalence of GATA3 mutations across all of the

10 clusters (Figure 4). These features separate IntClust 1

tumours from other ER-positive tumours previously grouped

together within the luminal B intrinsic subtype.

Amplification of 17q23 in these tumours is associated with

cis-driven overexpression of several adjacent genes including

RPS6KB1, PPM1D, PTRH2 and APPBP2 (Figure 1). In parti-

cular, RPS6KB1 (ribosomal protein S6 kinase 1) and PPM1D

(protein phosphatase 1D), show high cis outlying expression

in this group and both have previously been implicated as

potential oncogenic drivers (Sinclair et al, 2003). RPS6KB1 is

a serine/threonine protein kinase that acts downstream of

mammalian target of rapamycin (mTOR) signalling to

regulate cell cycle, cell growth, proliferation and migration

through translational control (Fingar et al, 2002, 2004;

Hannan et al, 2003). PPM1D is a p53-inducible serine/

threonine protein phosphatase known to dephosphorylate

p38 mitogen-activated protein kinase (MAPK) and inhibit

p38 MAPK-dependent phosphorylation of p53 leading to

downregulation of p53-dependent transcription, inhibition

of cell-cycle arrest and apoptosis (Bulavin et al, 2002). Both
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of these oncogene candidates represent novel potential

therapeutic targets, highlighting the importance of

understanding key genomic drivers within the subtypes and

using this information to improve substratification within the

disease.

IntClust 2

Integrative cluster 2 is comprised of ER-positive tumours and

includes both luminal A and luminal B tumours. Remarkably,

this subgroup is associated with the worst prognosis of all ER-

positive tumours with a 10-year disease-specific survival rate

of only around 50% (Figure 3). The defining molecular

feature of this subtype is amplification of 11q13/14

(Figure 1) showing a characteristic ‘firestorm’ pattern identi-

fied by clustered narrow peaks of relatively high copy num-

ber gains (Hicks et al, 2006). This is reflected in the relatively

high levels of genomic instability in this group (Figure 4).

Amplification of 11q13/14 is well recognised in breast cancer,

with several known and putative driver genes residing in this

region including CCND1 (11q13.3), EMSY (11q13.5) and PAK1

(11q14.1) (Hughes-Davies et al, 2003; Santarius et al, 2010).

Analysis of copy number data suggests two separate

amplicons in this region; one amplicon centred around

CCND1 at 11q13.3 and the other spanning UVRAG-GAB2

between 11q13.5 and 11q14.1 encompassing multiple genes

that show strong cis outlying gene expression including

PAK1, RSF1, EMSY, C11orf67 and INTS4 (Figure 1).

Distinguishing a single driver in the region of 11q13/14 is

challenging as the majority of individuals in this subgroup

have amplifications involving multiple genes, suggesting that

a combination of drivers are likely to be important rather

than just a single oncogene. Pathway analysis in this subtype

shows enrichment of genes involved in cell-cycle regulation,

particularly the G1/S transition as exemplified by CCND1.

These alterations are likely to explain the aggressive patho-

physiology of this cluster and emphasise the importance of

identifying this poor prognostic group within ER-positive

subtypes.

IntClust 3

Integrative cluster 3 is composed primarily of luminal A cases

and is enriched for histopathological subtypes that have a

good prognosis such as invasive lobular and tubular carci-

nomas. Clinically, individuals within this subtype often pre-

sent with small low-grade tumours and a low incidence of

regional lymph-node involvement (Figure 3). At the molecu-

lar level, the subtype is characterised by low genomic in-

stability, a very low prevalence of TP53 mutations, and a

paucity of copy number and cis-acting alterations (Figures 1

and 4). However, of note, tumours within this subtype have

the highest frequency of PIK3CA, CDH1 and RUNX1 muta-

tions (Figure 4). Importantly, the subgroup is associated with

the best prognosis of all the 10 integrative clusters with a

10-year disease-specific survival of around 90% (Figure 3).

The excellent prognosis of this subtype emphasises the im-

portance of identifying this cluster within the previously

defined luminal A intrinsic subtype, as these individuals

represent a distinct group that could potentially be spared

treatment with systemic chemotherapy.

IntClust 4

Integrative cluster 4 is a unique cluster incorporating both

ER-positive (n¼ 238/343) and ER-negative (n¼ 105/343)

cases, including 26% of all triple negative tumours, and a

mixture of intrinsic subtypes including basal-like cases

(Table II). Importantly, the subtype is associated with favour-

able outcome and a 10-year disease-specific survival of

around 80% (Figure 3). Similarly to IntClust 3, IntClust4,

the largest subtype of breast cancer (up to 17% of cases), is

characterised molecularly by low levels of genomic instability

and a ‘CNA-devoid’ flat copy number landscape (Figures 1

and 4). Around 20% of cases within this subtype demonstrate

deletions at the T-cell receptor (TCR) loci on chromosomes 7
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Figure 2 Relationship between the 10 integrative clusters and ER expression, HER2 expression and PR expression. IHC, immunohistochem-
istry; Expression, mRNA gene expression; SNP6¼ copy number alteration as assessed by Affymetrix SNP 6.0 array.
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(TRG) and 14 (TRA), in the background of an otherwise

genomically quiescent subtype. Many of the tumours

within this subgroup show evidence of extensive lymphocytic

infiltration and the observed deletions are the consequence of

the somatic TCR rearrangement present in the infiltrating

Tcells. This was previously reported using single-cell sequen-

cing in one case of triple negative breast cancer with exten-

sive lymphocytic infiltration (Navin et al, 2011), but is now

demonstrated using array profiling and a fairly large number

of tumours. The genomic copy number loss at the TCR loci is

associated in trans with an immune response expression

signature mirroring the lymphocytic infiltration and

probably explaining the favourable prognosis seen, in

particular, for the triple negative tumours classified into this

subtype. These findings, in a subset of basal triple negative

tumours, support earlier observations using gene expression

analysis (Teschendorff et al, 2007; Teschendorff and

Caldas, 2008) and are also corroborated by a recent

combined analysis of imaging and expression data (Yuan

et al, 2012). The observations suggest that the presence of

mature T lymphocytes in the tumour represents a specific

immunological response to the cancer, a finding that could

potentially be exploited in the development of future

therapeutics.

IntClust 5

Integrative cluster 5 encompasses the ERBB2 amplified can-

cers composed of both HER2-enriched ER-negative (58%)

and luminal ER-positive cases (42%). Women in the

METABRIC study were enrolled before the general availability

of trastuzumab, and as expected, this group demonstrated the

worst disease-specific survival at 10 years of around 45%

(Figure 3). In keeping with common clinical features of

HER2-positive breast cancers, individuals within this subtype

often present at a younger age, with high-grade tumours and

involvement of regional lymph nodes (Figure 3). In addition

to specific ERBB2 amplification at 17q12 (Figure 1), these

tumours demonstrate intermediate levels of genomic instabil-
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ity and a high proportion of TP53 mutations (in 460% cases)

(Figure 4). In contrast to the HER2-enriched intrinsic

subtype, the IntClust 5 identifies almost all cases with

ERBB2 amplification, thus grouping all individuals that

might benefit from HER2-related targeted therapy into a

single subtype.
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IntClust 6

Integrative cluster 6 represents a distinct subgroup of ER-

positive tumours, comprising both luminal A and luminal B

cases. Clinically, this cluster shows an intermediate prognosis

and a 10-year disease-specific survival of around 60%

(Figure 3). Molecularly, this subtype is characterised by

specific amplification of the 8p12 locus (Figure 1) and high

levels of genomic instability (Figure 4). Notably, tumours

within this cluster demonstrate the lowest levels of PIK3CA

mutations across all of the ER-positive cancers (Figure 4). The

genomic landscape is dominated by cis-acting alterations

associated with the 8p12 amplicon, a region previously

known to be commonly amplified in ER-positive breast

cancers, which encompasses the known oncogenic driver

ZNF703 (Holland et al, 2011; Sircoulomb et al, 2011; Slorach

et al, 2011; Figure 1). ZNF703 (zinc finger protein 703) is a

transcriptional repressor that regulates genes involved in key

cancer phenotypes such as increased proliferation, invasion

and the balance of the progenitor/stem cell compartment

(Holland et al, 2011). Similarly to IntClust 2, identification of

this more aggressive group of ER-positive/HER2-negative

tumours within the luminal intrinsic subtypes may assist

in improving the stratification and prediction of outcome in

women with ER-positive disease.

IntClust 7

Integrative cluster 7 is comprised predominately of ER-posi-

tive luminal A tumours and identifies a good prognostic

subgroup with 10-year disease-specific survival rates of

around 80% (Figure 3). As for cases in IntClust 3, the

majority of individuals within this cluster present with low-

grade well-differentiated tumours that display both ER and

PR positivity (Figure 3). However, unlike the paucity of copy

number changes seen in association with IntClust 3, IntClust

7 is characterised by intermediate levels of genomic instabil-

ity, specific 16p gain and 16q loss, as well as a higher

frequency of 8q amplification (Figures 1 and 4).

Interestingly, tumours within IntClust 7 also demonstrate

the highest frequency of MAP3K1 and CTCF mutations across

all clusters (Figure 4).

IntClust 8

Integrative cluster 8 shares similarities with IntClust7 and

encompasses ER-positive tumours predominately of the

luminal A intrinsic subtype. As described for IntClust 7,

individuals within IntClust 8 also present with low-grade

well-differentiated tumours (Figure 3), and the subgroup is

associated with a good prognosis and similar 10-year disease-

specific survival rates of around 80% (Figure 3). This

subgroup, however, is characterised molecularly by the clas-

sical 1q gain/16q loss event that corresponds to a common

unbalanced translocation event (Kokalj-Vokac et al, 1993;

Russnes et al, 2010), unlike IntClust 7 that lacks the 1q

alteration but maintains the 16q changes (Figure 1).

Although genomic instability is generally lower in well-

differentiated breast carcinomas (Figure 4), the frequent

identification of 1q gains and 16q losses that characterise

the IntClust 8 subtype is well recognised in low-grade in-

vasive ductal carcinomas (Roylance et al, 1999).

Furthermore, tumours within IntClust 8 demonstrate high

levels of PIK3CA, GATA3 and MAP2K4 mutations (Figure 4).

Together with IntClust 3 and IntClust 7, IntClust 8 separates

tumours previously grouped under the luminal A intrinsic

subtype into three distinct biological subgroups driven by

specific genomic aberrations (Figure 3).

IntClust 9

Integrative cluster 9 is comprised of a mixture of intrinsic

subtypes, but includes a large number of ER-positive cases of

the luminal B subgroup. Similarly to IntClust 6, IntClust 9

shows an intermediate prognosis with a 10-year disease-

specific survival of around 60% (Figure 3). This cluster is

characterised by high levels of genomic instability and the

highest level of TP53 mutations among the ER-positive sub-

types (Figure 4). Molecularly, it is defined by 8q cis-acting

alterations and 20q amplification (Figure 1). In conjunction

with IntClust 1 and IntClust 6, IntClust 9 shows a high

proportion of cases with deletions of PPP2R2A, on chromo-

some 8p. PP2R2A (protein phosphatase 2 regulatory subunit

B alpha) is a serine/threonine phosphatase integral to several

signal transduction pathways. Loss of transcript expression of

PPP2R2A appears to predominate in mitotic ER-positive

breast cancers typically of the luminal B intrinsic subtype,

such as those grouped into IntClust 1, 6 and 9. Mutations

and methylation silencing of PPP2R2A have recently been

reported in other solid malignancies (Tan et al, 2010;

McConechy et al, 2011), suggesting a possible role for

PPP2R2A as a putative tumour suppressor in tumours

associated with the luminal B subtype, in particular those

associated with this integrative cluster.

IntClust 10

Integrative cluster 10 incorporates mostly triple negative

tumours (n¼ 190/320 classify into this cluster) from the

core basal-like intrinsic subtype. Although the subtype repre-

sents a high-risk group in the first 5 years after diagnosis,

beyond 5 years the prognosis for this subgroup is relatively

good (Blows et al, 2010; Figure 3). Clinically, these women

usually present at a younger age with high-grade and poorly

differentiated tumours (Figure 3). These breast cancers have

the highest rates of TP53 mutations despite displaying only

intermediate levels of genomic instability (Figure 4).

Molecularly, the subtype is characterised by copy number

alterations involving 5q loss and gains at 8q, 10p and 12p

(Figure 1). In particular, 5q deletions are associated with a

basal-specific trans gene expression module enriched for

many checkpoint, DNA damage repair and apoptosis genes

such as AURKB, BCL2, BUB1, CDCA3, CDCA4, CDC20,

CDC45, CHEK1, FOXM1, HDAC2, IGF1R, KIF2C, KIFC1,

MTHFD1L, RAD51AP1, TTK and UBE2C. These transcrip-

tional changes reflect the high mitotic index typically

associated with this subgroup. Of note, TTK (MPS1) a dual

specificity kinase that assists AURKB in chromosome align-

ment during mitosis is upregulated in association with 5q loss

and high levels of TTK have recently been reported to

promote aneuploidy in breast cancer (Daniel et al, 2011).

These findings suggest that 5q deletions modulate the

landscape of genomic instability and cell-cycle regulation

alterations observed within this subgroup.

Conclusions

The future of breast cancer classification will involve multiple

levels of assessment incorporating clinical information about
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the patient, tumour-specific information determined by his-

topathology, and molecular information revealed by geno-

mic, transcriptomic and proteomic profiling to provide

subtype-specific diagnostic, prognostic and predictive tests.

At the genomic level, next generation sequencing will allow

the complete genomic landscape of somatic mutations, struc-

tural rearrangements, copy number alterations and epigenetic

events to be assessed adding increasing complexity, yet

helping to further elucidate the mechanisms driving each

subtype. As well as focussing on understanding intertumour

heterogeneity, the context of intratumour heterogeneity will

also require consideration in the interpretation and imple-

mentation of molecular classification systems (Caldas, 2012).

Integrating multiple layers of complex data into robust

classifiers and the clinical implementation of these into the

routine management of breast cancer patients will present

many challenges. However, rapid progress is being made,

allowing us to move closer to the realisation of

individualising the diagnosis and treatment of breast cancer.

Through the integrated analysis of CNAs and their effect on

gene expression, novel molecular subgroups have been iden-

tified that help refine our understanding of breast cancer

heterogeneity. The integrative clusters provide important

biological insights into the potential molecular drivers and

pathways underlying certain groups, and these have distinct

implications for the rationale development of targeted

therapeutics. In addition the analysis highlights key subtypes,

such as those devoid of somatic CNAs that will require more

extensive molecular profiling. As we gain a better apprecia-

tion of the heterogeneity of breast cancer, it is clear that

thousands of patients must be studied to fully appreciate

the clinical implications of novel and rare subgroups of the

disease. Furthermore, more sophisticated model systems,

both in vitro and in vivo, including the use of xenograft

tumours derived directly from primary clinical material,

will be needed to dissect the biological complexities

of this heterogeneity. These approaches will provide the

opportunity to understand the molecular events and

pathways underpinning each group, and potentially allow

the identification of the cell of origin or tumour-initiating

cell in each subtype. These findings will undoubtedly

lead to fundamental advances in our approach to the classi-

fication, biological characterisation and management

of breast cancer.
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